精英家教网 > 高中数学 > 题目详情
19.已知函数f(x)=x+$\frac{1}{x}$.
(I)判断函数的奇偶性,并加以证明;
(II)用定义证明f(x)在(0,1)上是减函数;
(III)函数f(x)在(-1,0)上的单调性如何?(直接写出答案,不要求写证明过程).

分析 (I)函数的定义域为{x|x≠0},直接利用奇偶性定义证明即可;
(II)直接利用函数单调性定义证明即可;
(III)根据函数的性质(I)(II)可直接得出结果;

解答 解:(I)由题意知:x≠0;
∴函数的定义域为{x|x≠0};
又∵$f(-x)=-x-\frac{1}{x}=-(x+\frac{1}{x})=-f(x)$;
∴函数f(x)为奇函数;
(II)设0<x1<x2<1则
$f({x_1})-f({x_2})={x_1}+\frac{1}{x_1}-{x_2}-\frac{1}{x_2}=({x_1}-{x_2})-\frac{{{x_1}-{x_2}}}{{{x_1}{x_2}}}=({x_1}-{x_2})(1-\frac{1}{{{x_1}{x_2}}})$;
∵0<x1<x2<1;
∴${x_1}-{x_2}<0,1-\frac{1}{{{x_1}{x_2}}}<0$;
∴f(x1)-f(x2)>0即f(x1)>f(x2);
∴函数f(x)在(0,1)上是减函数;
(III)函数f(x)在(-1,0)上是减函数.

点评 本题主要考查了函数的奇偶性定义、单调性定义证明等函数基本性质,属基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图,在平行四边形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AN}=3\overrightarrow{NC}$,则$\overrightarrow{BN}$=(  )
A.$\frac{3}{4}\overrightarrow b+\frac{1}{4}\overrightarrow a$B.$\frac{1}{4}\overrightarrow b+\frac{3}{4}\overrightarrow a$C.$\frac{3}{4}\overrightarrow b-\frac{1}{4}\overrightarrow a$D.$\frac{1}{4}\overrightarrow b-\frac{3}{4}\overrightarrow a$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)的离心率为$\frac{{\sqrt{2}}}{2}$,且a2=2b.
(1)求椭圆的方程;
(2)是否存在实数m,使得直线l:x-y+m=0与椭圆交于A,B两点,且线段AB的中点在圆x2+y2=5上,若存在,求出m的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知p是曲线$\left\{\begin{array}{l}{x=2cosβ}\\{y=\sqrt{3}sinβ}\end{array}\right.$上一点,F1,F2是该曲线的两个焦点,若△F1PF2内角平分线的交点到三边上的距离为1,则$\overrightarrow{P{F}_{1}}$•$\overrightarrow{P{F}_{2}}$的值为(  )
A.$\frac{3}{2}$B.$\frac{9}{4}$C.-$\frac{9}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知α,β是关于x的一元二次方程x2+(2m+3)x+m2=0的两个不相等的实数根,且满足$\frac{1}{α}$+$\frac{1}{β}$=-1,则m的值是(  )
A.3或-1B.3C.1D.-3或1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若数列{an}满足关系:an+1=1+$\frac{1}{a_n}$,a1=1,则a3=(  )
A.$\frac{8}{5}$B.$\frac{3}{2}$C.$\frac{5}{3}$D.$\frac{13}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若△ABC的内角A、B、C所对的边a、b、c满足(a+b)2-c2=4,且C=60°,则△ABC的面积为(  )
A.$\frac{\sqrt{3}}{3}$B.2$\sqrt{3}$-3C.$\frac{\sqrt{3}}{4}$D.$\frac{\sqrt{3}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.若a=30.6,b=log30.2,c=0.63,则a,b,c的大小关系是(  )
A.a<b<cB.b<c<aC.a<b<cD.a<c<b

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.设集合M={x|x=a},N={x|ax-1=0},若M∩N=N,则实数a的值为(  )
A.1或0B.-1或0C.1或-1D.0或1或-1

查看答案和解析>>

同步练习册答案