精英家教网 > 高中数学 > 题目详情
9.如图,在平行四边形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AN}=3\overrightarrow{NC}$,则$\overrightarrow{BN}$=(  )
A.$\frac{3}{4}\overrightarrow b+\frac{1}{4}\overrightarrow a$B.$\frac{1}{4}\overrightarrow b+\frac{3}{4}\overrightarrow a$C.$\frac{3}{4}\overrightarrow b-\frac{1}{4}\overrightarrow a$D.$\frac{1}{4}\overrightarrow b-\frac{3}{4}\overrightarrow a$

分析 由已知条件得$\overrightarrow{AN}=\frac{3}{4}\overrightarrow{AC}$,再求出$\overrightarrow{AC}$,$\overrightarrow{BN}$=$\overrightarrow{AN}-\overrightarrow{AB}$,则答案可求.

解答 解:∵$\overrightarrow{AN}=3\overrightarrow{NC}$,
∴$\overrightarrow{AN}=\frac{3}{4}\overrightarrow{AC}$,
又$\overrightarrow{AC}=\overrightarrow{AD}+\overrightarrow{CD}=\overrightarrow{a}+\overrightarrow{b}$
则$\overrightarrow{BN}$=$\overrightarrow{AN}-\overrightarrow{AB}$=$\frac{3}{4}(\overrightarrow{a}+\overrightarrow{b})-\overrightarrow{a}$=$\frac{3}{4}\overrightarrow{b}-\frac{1}{4}\overrightarrow{a}$.
故选:C.

点评 本题考查了用一组向量来表示一个向量,考查了向量的加减运算,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的半焦距为c,(a,0)、(0,b)为直线l上两点,已知原点到直线l的距离为$\frac{{\sqrt{3}}}{4}$c,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$或2C.2D.2或 $\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.(1)已知a,b,c均为正实数,且a+b+c=1,求证:$\frac{1}{a}$+$\frac{1}{b}$+$\frac{1}{c}$≥9;
(2)已知a>b>c,且a+b+c=0,求证:$\sqrt{{b}^{2}-ac}$<$\sqrt{3}$a.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知:数列{an},{bn}中,a1=0,b1=1,且当n∈N*时,an,bn,an+1成等差数列,bn,an+1,bn+1成等比数列;
(1)求数列{an},{bn}的通项公式;
(2)求最小自然数k,使得当n≥k时,对任意实数λ∈[0,1],不等式(2λ-3)bn≥(2λ-4)an+λ-3恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.记${\left.{\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|_m}$=a0+a1×m+…+an-1×mn-1+an×mn,其中n≤m,m、n均为正整数,ak∈{0,1,2,…,m-1}(k=0,1,2,…,n)且an≠0;
(1)计算${\left.{\overline{2016}}\right|_7}$=699;
(2)设集合A(m,n)=$\left\{{{{\left.{\left.x\right|x=\overline{{a_n}{a_{n-1}}{a_{n-2}}…{a_1}{a_0}}}\right|}_m}}\right\}$,则A(m,n)中所有元素之和为$\frac{{({{m^{n+1}}+{m^n}-1})({{m^{n+1}}-{m^n}})}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{4}$+y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1,y1),B(x2,y2)满足$\frac{{{y_1}{y_2}}}{{\overrightarrow{OA}•\overrightarrow{OB}}}$=$\frac{1}{5}$.
(1)求证:$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$;
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ln(x2+1),g(x)=$\frac{1}{{x}^{2}-1}$+a.
(1)若f(x)的一个极值点到直线l:2$\sqrt{2}$x+y+a+5=0的距离为1,求a的值;
(2)求方程f(x)=g(x)的根的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知函数f(x)=$\left\{\begin{array}{l}{1-|x|,(x≤1)}\\{{x}^{2}-4x+3,(x>1)}\end{array}\right.$,若f(f(m))≥0,则实数m的取值范围是(  )
A.[-2,2]B.[-2,2]∪[4,+∞)C.[-2,2+$\sqrt{2}$]D.[-2,2+$\sqrt{2}$]∪[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=x+$\frac{1}{x}$.
(I)判断函数的奇偶性,并加以证明;
(II)用定义证明f(x)在(0,1)上是减函数;
(III)函数f(x)在(-1,0)上的单调性如何?(直接写出答案,不要求写证明过程).

查看答案和解析>>

同步练习册答案