精英家教网 > 高中数学 > 题目详情
19.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的半焦距为c,(a,0)、(0,b)为直线l上两点,已知原点到直线l的距离为$\frac{{\sqrt{3}}}{4}$c,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$或2C.2D.2或 $\frac{{2\sqrt{3}}}{3}$

分析 先求出直线l的方程,利用原点到直线l的距离为$\frac{{\sqrt{3}}}{4}$c,及又c2=a2+b2,求出离心率.

解答 解:∵直线l过(a,0),(0,b)两点,
∴直线l的方程为:$\frac{x}{a}+\frac{y}{b}=1$,即bx+ay-ab=0,
∵原点到直线l的距离为$\frac{\sqrt{3}}{4}$c,∴$\frac{|ab|}{\sqrt{{a}^{2}+{b}^{2}}}$=$\frac{\sqrt{3}c}{4}$.
又c2=a2+b2,∴3c4-16a2(c2-a2)=0,即3e4-16e2+16=0;
故离心率为 e=$\frac{c}{a}$=$\frac{2\sqrt{3}}{3}$或e=2;
故选:D.

点评 本题主要考查双曲线的标准方程,以及简单性质的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.设全集U={x∈R|x>0},函数f(x)=$\sqrt{1-lnx}$的定义域为A,则∁UA为(  )
A.(e,+∞)B.[e,+∞)C.(0,e)D.(0,e]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在数列{an}中,a1=1,且an+1=$\frac{{2{a_n}}}{{{a_n}+2}}$(n∈N*).
(Ⅰ)求a2,a3,a4的值;
(Ⅱ)猜想数列{an}的通项公式的表达式,并用数学归纳法证明你的猜想.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.某校为了了解学生的成绩是否与玩网游有关系,随机抽查了110名学生,得到如下2×2列联表:
  优秀非优秀 
 喜欢 10 50
 不喜欢 20 30
参考公式临界值表:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$.
P(K2≥k)0.1000.0500.0250.0100.001
k2.7063.8415.0246.63510.828
(1)根据列联表的数据,问:有多大把握认为“成绩优秀与玩网友有关?”
(2)现采用分层抽样方法,从不喜欢的样本中抽取5人,再从5人中随机抽取2人,求至少有一人成绩优秀的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知极坐标系与直角坐标系xOy取相同的长度单位,且以原点O为极点,以x轴正半轴为极轴,直线l的参数方程为$\left\{\begin{array}{l}{x=4+\frac{1}{2}t}\\{y=\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),圆C的极坐标方程为ρ=4cosθ,直线l与圆C交于M,N两点.
(Ⅰ)求圆C和直线l的普通方程;
(Ⅱ)求线段MN的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知某正方体的外接球的表面积是16π,则这个正方体的棱长是(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{4\sqrt{2}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知函数f(x)=2x2-ax+lnx在其定义域内不单调,则实数a的取范围为(  )
A.(-∞,4]B.(-∞,4)C.(4,+∞)D.[4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.为得到函数y=sin(x+$\frac{π}{3}$)的图象,可将函数y=sinx的图象左移m个单位长度,则最小正数m是$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,在平行四边形ABCD中,$\overrightarrow{AB}=\overrightarrow a,\overrightarrow{AD}=\overrightarrow b,\overrightarrow{AN}=3\overrightarrow{NC}$,则$\overrightarrow{BN}$=(  )
A.$\frac{3}{4}\overrightarrow b+\frac{1}{4}\overrightarrow a$B.$\frac{1}{4}\overrightarrow b+\frac{3}{4}\overrightarrow a$C.$\frac{3}{4}\overrightarrow b-\frac{1}{4}\overrightarrow a$D.$\frac{1}{4}\overrightarrow b-\frac{3}{4}\overrightarrow a$

查看答案和解析>>

同步练习册答案