精英家教网 > 高中数学 > 题目详情
4.已知某正方体的外接球的表面积是16π,则这个正方体的棱长是(  )
A.$\frac{{2\sqrt{2}}}{3}$B.$\frac{{2\sqrt{3}}}{3}$C.$\frac{{4\sqrt{2}}}{3}$D.$\frac{{4\sqrt{3}}}{3}$

分析 根据正方体外接球的表面积求出棱长即可.

解答 解:设正方体的棱长为a,则正方体的体对角线的长就是外接球的直径,
∴外接球的半径为:$\frac{\sqrt{3}}{2}$a,
∵正方体外接球表面积是16π,
∴4π($\frac{\sqrt{3}}{2}$a)2=16π,
解得a=$\frac{4\sqrt{3}}{3}$.
故选:D.

点评 此题考查了点、线、面间的距离计算,熟练掌握正方体外接球表面积公式是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

14.如图在三棱柱ABC-A1B1C1中,AA1⊥平面ABC,AB=AC=2$\sqrt{2}$,BC=BB1=4,D、E分别为BC,BB1的中点.
(Ⅰ)求证:CE⊥平面AC1D;
(Ⅱ)求直线AB与平面AC1D所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.设数列{an}的前n项和为Sn,且(Sn-1)2=anSn
(Ⅰ)求S1、S2、S3
(Ⅱ)猜想Sn的表达式,并用数字归纳法证明.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.对标有不同编号的形状大小完全一样的5件正品和3件次品进行检测,现不放回地依次取出2件,则在第一次取出正品的条件下,第二次也取出正品的概率是(  )
A.$\frac{1}{8}$B.$\frac{5}{8}$C.$\frac{5}{14}$D.$\frac{4}{7}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设双曲线$\frac{x^2}{a^2}-\frac{y^2}{b^2}$=1的半焦距为c,(a,0)、(0,b)为直线l上两点,已知原点到直线l的距离为$\frac{{\sqrt{3}}}{4}$c,则双曲线的离心率为(  )
A.$\frac{{2\sqrt{3}}}{3}$B.$\sqrt{3}$或2C.2D.2或 $\frac{{2\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱锥A-BCD中,AB⊥平面BCD,AC=AD=2,BC=BD=1,点E是线段AD的中点.
(Ⅰ)如果CD=$\sqrt{2}$,求证:平面BCE⊥平面ABD;
(Ⅱ)如果∠CBD=$\frac{2π}{3}$,求直线CE和平面BCD所成的角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.某视频加工厂以前的卫生监测资料表明,按照国家标准衡量,该工厂一个月内每天的各项卫生指标达到优良标准的概率是0.95,连续两个月达到优良标准的概率是0.76,已知今年某个月各项指标均达到优良,则随后一个月也达到优良的概率是(  )
A.0.8B.0.95C.0.76D.0.722

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.以0(±$\sqrt{2}$,0)为焦点、坐标轴为对称轴的椭圆M与圆N外切,圆N的方程为(x-3)2+y2=1.
(1)求椭圆M的方程;
(2)若过原点的直线交圆N于A,B两点,且AB的中点为C,求点C的轨迹方程;
(3)若过圆心N且斜率为1的直线交圆N于Q,R两点,试探究在椭圆M上是否存在点P,使得以PQ为直径的圆过点N?说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{4}$+y2=1,A,B,C,D为椭圆上四个动点,且AC,BD相交于原点O,设A(x1,y1),B(x2,y2)满足$\frac{{{y_1}{y_2}}}{{\overrightarrow{OA}•\overrightarrow{OB}}}$=$\frac{1}{5}$.
(1)求证:$\overrightarrow{AB}$+$\overrightarrow{CD}$=$\overrightarrow{0}$;
(2)kAB+kBC的值是否为定值,若是,请求出此定值,并求出四边形ABCD面积的最大值,否则,请说明理由.

查看答案和解析>>

同步练习册答案