精英家教网 > 高中数学 > 题目详情
10.如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,直线PC与底面ABCD所成的角45°,E,F,M分别是BC,PC,PA的中点.
(1)PC∥平面MBD;
(2)证明:AE⊥PD;
(3)求二面角E-AF-C的余弦值;
(4)若PA=2,求棱锥C-PAD的体积.

分析 (1)取AC中点O,连结OM,利用中位线定理得出OM∥PC,故而PC∥平面MBD;
(2)由PA⊥平面ABCD得PA⊥AE,由菱形的性质得出AE⊥BC,故而AE⊥AD,于是AE⊥平面PAD,故而AE⊥PD;
(3)建立空间坐标系,使用向量法解出;
(4)以△ACD为底面,PA为棱锥的高,代入棱锥的体积公式计算.

解答 (1)证明:连结BD交AC与O,连结MO
∵四边形ABCD是菱形,∴O是AC的中点,又M是PA的中点,
∴MO∥PC,∵MO?平面MBD,PC?平面MBD,
∴PC∥平面MBD.

(2)证明:∵PA⊥平面ABCD,AE?平面ABCD,
∴PA⊥AE,
∵四边形ABCD是菱形,∠ABC=60°,
∴△ABC是等边三角形,BC∥AD,
∵E是BC中点,∴AE⊥BC,
∴AE⊥AD,又PA∩AD=A,PA?平面PAD,AD?平面PAD
∴AE⊥平面PAD,∵PD?平面PAD,
∴AE⊥PD.
(3)解:以A为坐标原点建立如图所示的空间直角坐标系,

:∵PA⊥平面ABCD,∴∠PCA为直线PC与平面ABCD所成的角,
∴∠PCA=45°.∴PA=AC,
设AB=a,则A(0,0,0),E($\frac{\sqrt{3}a}{2}$,0,0),C($\frac{\sqrt{3}a}{2}$,$\frac{a}{2}$,0),P(0,0,a),∴F($\frac{\sqrt{3}a}{4}$,$\frac{a}{4}$,$\frac{a}{2}$).
∴$\overrightarrow{AE}$=($\frac{\sqrt{3}a}{2}$,0,0),$\overrightarrow{AF}$=($\frac{\sqrt{3}a}{4}$,$\frac{a}{4}$,$\frac{a}{2}$),$\overrightarrow{AC}$=($\frac{\sqrt{3}a}{2}$,$\frac{a}{2}$,0),
设平面AEF的法向量为$\overrightarrow{{n}_{1}}$=(x,y,z),则$\overrightarrow{{n}_{1}}•\overrightarrow{AE}=0$,$\overrightarrow{{n}_{1}}•\overrightarrow{AF}$=0,
∴$\left\{\begin{array}{l}{\frac{\sqrt{3}}{2}ax=0}\\{\frac{\sqrt{3}}{4}ax+\frac{1}{4}ay+\frac{1}{2}az=0}\end{array}\right.$,令z=1得$\overrightarrow{{n}_{1}}$=(0,-2,1).
设平面ACF的法向量为$\overrightarrow{{n}_{2}}$=(x,y,z),则$\overrightarrow{{n}_{2}}•\overrightarrow{AF}=0$,$\overrightarrow{{n}_{2}}•\overrightarrow{AC}=0$,
∴$\left\{\begin{array}{l}{\frac{\sqrt{3}ax}{4}+\frac{ay}{4}+\frac{az}{2}=0}\\{\frac{\sqrt{3}ax}{2}+\frac{ay}{2}=0}\end{array}\right.$,令x=1得$\overrightarrow{{n}_{2}}$=(1,-$\sqrt{3}$,0).
∴$\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}$=2$\sqrt{3}$,|$\overrightarrow{{n}_{1}}$|=$\sqrt{5}$,|$\overrightarrow{{n}_{2}}$|=2,
∴cos<$\overrightarrow{{n}_{1}}$,$\overrightarrow{{n}_{2}}$>=$\frac{\overrightarrow{{n}_{1}}•\overrightarrow{{n}_{2}}}{|\overrightarrow{{n}_{1}}||\overrightarrow{{n}_{2}}|}$=$\frac{\sqrt{15}}{5}$.
∴二面角E-AF-C的余弦值为$\frac{{\sqrt{15}}}{5}$.
(4)解:∵PA⊥平面ABCD,∴∠PCA为直线PC与平面ABCD所成的角,
∴∠PCA=45°,∴AC=PA=2,
∴S△ACD=$\frac{\sqrt{3}}{4}A{C}^{2}$=$\sqrt{3}$.
∴VC-PAD=VP-ACD=$\frac{1}{3}{S}_{△ACD}•PA$=$\frac{1}{3}×\sqrt{3}×2$=$\frac{{2\sqrt{3}}}{3}$.

点评 本题考查了线面平行与垂直的性质与判定,空间角的计算和棱锥的体积计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.下面的问题中必须用条件结构才能实现的个数是(  )
①已知三角形三边长,求三角形的面积;②求方程ax+b=0,(a,b为常数)的根;③求三个实数a,b,c中的最大者;④求1+2+3+…+100的值.
A.4个B.3个C.2个D.1个

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.四面体的一条棱长为x,其它各棱长均为1,若把四面体的体积V表示成关于x的函数V(x),则函数V(x)的单调递减区间是($\frac{\sqrt{6}}{2},\sqrt{3}$).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.如图茎叶图记录了甲、乙两位射箭运动员的5次比赛成绩(单位:环),若两位运动员平均成绩相同,则成绩较为稳定(方差较小)的那位运动员成绩的方差为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.定义在[-1,1]上的函数y=f(x)是增函数且是奇函数,若f(-a+1)+f(4a-5)>0.求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某房地产公司新建小区有A、B两种户型住宅,其中A户型住宅每套面积为100平方米,B户型住宅每套面积为80平方米.该公司准备从两种户型住宅中各拿出12套销售给内部员工,表是这24套住宅每平方米的销售价格:(单位:万元/平方米):
房号123456789101112
A户型2.62.72.82.82.93.22.93.13.43.33.43.5
B户型3.63.73.73.93.8.3.94.24.14.14.24.34.5
(Ⅰ)根据表格数据,完成下列茎叶图,并分别求出A,B两类户型住宅每平方米销售价格的中位数;
(Ⅱ)该公司决定对上述24套住房通过抽签方式销售,购房者根据自己的需求只能在其中一种户型中通过抽签方式随机获取房号,每位购房者只有一次抽签机会.小明是第一位抽签的员工,经测算其购买能力最多为320万元,抽签后所抽得住房价格在其购买能力范围内则确定购买,否则,将放弃此次购房资格.为了使其购房成功的概率更大,他应该选择哪一种户型抽签?

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知a>0,b>0,且a+b=1.
(1)若ab≤m恒成立,求m的取值范围;
(2)若$\frac{1}{a}+\frac{1}{b}≥|{2x-1}|-|{x+1}|$恒成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.从集合A={-3,-2,-1,2}中随机选取一个数记为k,从集合B={-2,1,2}中随机选取一个数记为b,则直线y=kx+b不经过第四象限的概率为(  )
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{1}{12}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设f(x)是定义在R上的函数,对x∈R都有f(-x)=f(x),f(2+x)=f(2-x),且当x∈[-2,0]时,f(x)=($\frac{1}{2}$)x-1,若在区间(-2,6]内关于x的方程f(x)-loga(x+2)=0(a>1)恰有3个不同的实数根,则a的取值范围是(  )
A.(1,2)B.(2,+∞)C.(1,$\root{3}{4}$)D.($\root{3}{4}$,2)

查看答案和解析>>

同步练习册答案