精英家教网 > 高中数学 > 题目详情
1.四面体的一条棱长为x,其它各棱长均为1,若把四面体的体积V表示成关于x的函数V(x),则函数V(x)的单调递减区间是($\frac{\sqrt{6}}{2},\sqrt{3}$).

分析 由题意画出三棱锥的图形,取BC,AD的中点分别为E,F,求出AED的面积,然后求出棱锥的体积,再由导数确定函数的单调减区间.

解答 解:如图,四面体ABCD中,AD=x,其余各棱为1.取AD中点F,BC中点E
在三角形ABC中,∵三角形ABC为正三角形,E点是BC的中点,
∴AE⊥BC,同理ED⊥BC,
∵AE∩ED=E,∴BC⊥面AED.
S△AED=$\frac{1}{2}$AD•EF,
EF=$\sqrt{(\frac{\sqrt{3}}{2})^{2}-(\frac{x}{2})^{2}}$=$\frac{1}{2}\sqrt{3-{x}^{2}}$,
∴V(x)=$\frac{1}{3}$•S△AED•BC=$\frac{1}{3}•\frac{1}{2}x•\frac{1}{2}\sqrt{3-{x}^{2}}=\frac{1}{12}x\sqrt{3-{x}^{2}}$,
由3-x2>0,得0$<x<\sqrt{3}$,
∴函数V(x)的定义域为(0,$\sqrt{3}$),
V′(x)=$\frac{1}{12}\sqrt{3-{x}^{2}}+\frac{1}{12}x•\frac{1}{2}\frac{1}{\sqrt{3-{x}^{2}}}(-2x)$
=$\frac{1}{12}\sqrt{3-{x}^{2}}-\frac{1}{12}\frac{{x}^{2}}{\sqrt{3-{x}^{2}}}$=$\frac{1}{12}•\frac{3-2{x}^{2}}{\sqrt{3-{x}^{2}}}$,
由3-2x2<0,得x$<-\frac{\sqrt{6}}{2}$(舍),或x$>\frac{\sqrt{6}}{2}$.
∴函数V(x)的单调递减区间是($\frac{\sqrt{6}}{2},\sqrt{3}$).
故答案为:($\frac{\sqrt{6}}{2},\sqrt{3}$).

点评 本题考查棱锥的体积,考查空间想象能力,计算能力,关键是把棱锥转化为两个棱锥,考查利用导数一句话是的单调性,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知sinα+cosα=$\frac{7}{5}$,求tanα+cotα的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知函数f(x)=lnx+ax2,g(x)=$\frac{1}{x}$+x+b,且直线y=-$\frac{1}{2}$是函数f(x)的一条切线.
(1)求a的值;
(2)对任意的x1∈[1,$\sqrt{e}$],都存在x2∈[1,4],使得f(x1)=g(x2),求b的取值范围
(3)已知方程f(x)=cx有两个根x1,x2(x1<x2),若g(x1+x2)+2c=0,求证:b<0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.$\int_0^2{(\sqrt{4-{x^2}}+x)dx}$=π+2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知三角形OAB三顶点坐标分别为(0,0)、(2,0)、(0,2),直线y=k(x-a)将三角形OAB分成面积相等的两部分,若0≤a≤1,则实数k的取值范围是[1,+∞)∪(-∞,-2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.下列函数中,定义域为R且为增函数的是(  )
A.$y=-\frac{2}{x}$B.y=x3C.y=lnxD.y=tanx

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知非零向量$\overrightarrow a$、$\overrightarrow b$满足$\left|{\overrightarrow a+\overrightarrow b}\right|=\left|{\overrightarrow a-\overrightarrow b}\right|=\frac{{2\sqrt{3}}}{3}\left|{\overrightarrow a}\right|$,则$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$的夹角为(  )
A.$\frac{5π}{6}$B.$\frac{π}{6}$C.$\frac{2π}{3}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知四棱锥P-ABCD,底面ABCD为菱形,PA⊥平面ABCD,∠ABC=60°,直线PC与底面ABCD所成的角45°,E,F,M分别是BC,PC,PA的中点.
(1)PC∥平面MBD;
(2)证明:AE⊥PD;
(3)求二面角E-AF-C的余弦值;
(4)若PA=2,求棱锥C-PAD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知函数$f(x)=\frac{x}{lnx}-ax$.
(1)若函数f(x)的图象在x=e2处的切线与y轴垂直,求实数a的值;
(2)a=1,x>1时,求证:$f(x)•\frac{x-1}{x}<\frac{3-x}{2}$;
(3)若$?{x_1},{x_2}∈[{e,{e^2}}]$,使f(x1)-f′(x2)≤a成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案