分析 (1)求函数的导数,利用导数的几何意义以及直线垂直的关系建立方程关系进行求解即可.
(2)将不等式进行转化为lnx>$\frac{2(x-1)}{x+1}$,构造函数h(x)=lnx-2+$\frac{4}{x+1}$,求函数的导数,利用函数的单调性证明不等式即可.
(3)命题“若存在x1,x2∈[e,e2],使f(x1)≤f′(x2)+a成立”,等价于“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,由此利用导数性质结合分类讨论思想,能求出实数a的取值范围.
解答 解:(1)由已知得f(x)的定义域为(0,1)∪(1,+∞),
f′(x)=-a+$\frac{lnx-1}{(lnx)^{2}}$,
则在x=e2处的切线斜率k=f(e2)=-a+$\frac{ln{e}^{2}-1}{(ln{e}^{2})^{2}}$=-a+$\frac{2-1}{4}$=-a+$\frac{1}{4}$,
若函数f(x)的图象在x=e2处的切线与y轴垂直,则-a+$\frac{1}{4}$=0,即a=$\frac{1}{4}$.
(2)当a=1,x>1时,不等式$f(x)•\frac{x-1}{x}<\frac{3-x}{2}$等价为($\frac{x}{lnx}$-x)$\frac{x-1}{x}$<$\frac{3-x}{2}$;
即($\frac{1}{lnx}$-1)(x-1)<$\frac{3-x}{2}$;
即$\frac{1}{lnx}$-1<$\frac{3-x}{2}$×$\frac{1}{x-1}$;
整理得lnx>$\frac{2(x-1)}{x+1}$=$\frac{2(x+1)-4}{x+1}$=2-$\frac{4}{x+1}$,
设h(x)=lnx-2+$\frac{4}{x+1}$,
则h′(x)=$\frac{1}{x}$-$\frac{4}{(x+1)^{2}}$=$\frac{(x+1)^{2}-4x}{x(x+1)^{2}}$=$\frac{(x-1)^{2}}{x(x+1)^{2}}$,
∵x>1,
∴h′(x)>0,故h(x)在(1,+∞)为增函数,
∴h(x)>h(1)=ln1-2+$\frac{4}{1+1}$=-2+2=0,
则h(x)>0,即不等式lnx>$\frac{2(x-1)}{x+1}$成立,
则$f(x)•\frac{x-1}{x}<\frac{3-x}{2}$成立.
(3)命题“若存在x1,x2∈[e,e2],使f(x1)-f′(x2)≤a
即f(x1)≤f′(x2)+a成立”,
等价于“当x∈[e,e2]时,有f(x)min≤f′(x)max+a”,
由(Ⅰ)知,当x∈[e,e2]时,lnx∈[1,2],$\frac{1}{lnx}$∈[$\frac{1}{2}$,1],
f′(x)=-a+$\frac{lnx-1}{(lnx)^{2}}$=-($\frac{1}{lnx}$-$\frac{1}{2}$)2+$\frac{1}{4}$-a,
f′(x)max+a=$\frac{1}{4}$,
问题等价于:“当x∈[e,e2]时,有f(x)min≤$\frac{1}{4}$”,
①当-a≤-$\frac{1}{4}$,即a$≥\frac{1}{4}$时,由(Ⅰ),f(x)在[e,e2]上为减函数,
则f(x)min=f(e2)=-ae2+$\frac{{e}^{2}}{2}$≤$\frac{1}{4}$,
∴-a≤$\frac{1}{4{e}^{2}}$-$\frac{1}{2}$,
∴a≥$\frac{1}{2}$-$\frac{1}{4{e}^{2}}$.
②当-$\frac{1}{4}$<-a<0,即0<a<$\frac{1}{4}$时,∵x∈[e,e2],∴lnx∈[$\frac{1}{2}$,1],
∵f′(x)=-a+$\frac{lnx-1}{(lnx)^{2}}$,由复合函数的单调性知f′(x)在[e,e2]上为增函数,
∴存在唯一x0∈(e,e2),使f′(x0)=0且满足:
f(x)min=f(x0)=-ax0+$\frac{{x}_{0}}{ln{x}_{0}}$,
要使f(x)min≤$\frac{1}{4}$,∴-a≤$\frac{1}{4{x}_{0}}$-$\frac{1}{ln{x}_{0}}$<$\frac{1}{4}$-$\frac{1}{2}$=-$\frac{1}{4}$,
与-$\frac{1}{4}$<-a<0矛盾,
∴-$\frac{1}{4}$<-a<0不合题意.
综上,实数a的取值范围为[$\frac{1}{2}$-$\frac{1}{4{e}^{2}}$,+∞).
点评 本题主要考查函数、导数等基本知识.考查运算求解能力及化归思想、函数方程思想、分类讨论思想的合理运用,注意导数性质的合理运用.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{1}{4}$ | C. | $\frac{1}{6}$ | D. | $\frac{1}{12}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,1)∪(2,+∞) | B. | (0,+∞) | C. | (2,+∞) | D. | (-∞,0)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,2) | B. | (2,+∞) | C. | (1,$\root{3}{4}$) | D. | ($\root{3}{4}$,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com