精英家教网 > 高中数学 > 题目详情
1.一个空间几何体的三视图如图所示,则几何体的体积为$\frac{10}{3}$.

分析 由三视图知该几何体是一个直三棱柱切去一个三棱锥所得的组合体,由三视图求出几何元素的长度,由柱体、锥体的体积公式求出几何体的体积.

解答 解:由三视图得该几何体是一个直三棱柱截去一个三棱锥所得的组合体,
其中截面是平面ABC,
且棱柱和棱锥底面是俯视图:等腰直角三角形,
棱柱高为2,棱锥的高是1,
∴底面面积S=$\frac{1}{2}$×2×2=2,
∴几何体的体积V=$2×2-\frac{1}{3}×2×1$=$\frac{10}{3}$,
故答案为:$\frac{10}{3}$.

点评 本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

5.已知函数f(x)=$\left\{\begin{array}{l}{2lnx,x>0}\\{{e}^{x},x≤0}\end{array}\right.$,则f(f($\frac{1}{e}$))=$\frac{1}{{e}^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在三棱锥P-AMC中,AC=AM=PM,AM⊥AC,PM⊥平面AMC,B,D分别为CM,AC的中点.
(Ⅰ)在PD上确定一点N,使得直线PM∥平面NAB,并说明理由;
(Ⅱ)在(Ⅰ)的条件下,求平面NAB和平面PAC所成锐二面角α的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知四棱柱ABCD-A1B1C1D1中,AA1⊥平面ABCD,底面ABCD为菱形,点F在AA1上,∠DAB=120°,AA1=AB=3AF=3,$\overrightarrow{{A}_{1}E}$=λ$\overrightarrow{{A}_{1}D}$(0<λ<1).
(1)若CE∥平面BDF,求λ的值;
(2)求平面CDE与平面BDF所成的锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.如图,四棱锥P-ABCD的底面是直角梯形,∠ABC=∠BCD=$\frac{π}{2}$,AB=BC=1,CD=2,PA⊥平面ABCD,E是PD的中点.
(1)求证:AE∥平面PBC;
(2)若直线AE与直线BC所成角等于$\frac{π}{3}$,求二面角D-PB-A平面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.某三棱锥的三视图如图所示,则该三棱锥体积是1,四个面的面积中最大的是$\frac{3\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,直三棱柱ABC-A′B′C′,E,F,G分别是A′C′,BC与B′C′的中点,且AA′=$\sqrt{3}$,BC=2,AC=4.平面ABGE⊥平面BCC′B′.
(Ⅰ)求证:AB⊥BC;
(Ⅱ)求平面ABE与平面EFC′所成角的平面角的余弦值的绝对值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.判断下列对应是否是映射,是否是函数.
(1)A=N,B=N*,f:x→y=|x-1|,x∈A,y∈B;
(2)A=R,B={1,2},f:x→y=$\left\{\begin{array}{l}{1(x≥0)}\\{2(x<0)}\end{array}\right.$;
(3)A={平面M内的三角形},B{平面M内的圆},对应法则是“作三角形的外接圆”.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.命题“?x∈R,x=|x|”的否定是(  )
A.“?x∈R,x≠|x|”B.“?x∈R,x=|x|”C.“?x∈R,x≠|x|”D.“?x∈R,x=-x”

查看答案和解析>>

同步练习册答案