精英家教网 > 高中数学 > 题目详情

【题目】某公司生产某种产品的固定成本为150万元,而每件产品的可变成本为2500元,每件产品的售价为3500元,已知该公司所生产的产品能够全部销售出去.

1)分别求出总成本(万元),单位成本(万元),销售总收入(万元),总利润(万元)关于总产量x(件)的函数解析式;

2)由(1)所求得的函数解析式,对这个公司的经济效益作出简单分析.

【答案】1,(2)当时,公司亏损;当时,公司不赔不赚;当时,公司赢利.

【解析】

1)由总产量乘以可变成本加上固定成本得出总成本,将总成本除以总产量得出单位成本,由售价乘以总产量得出销售总收入,由销售总收入减去总成本得出总利润

2)画出的大致图像,由图象分析该公司的盈亏情况.

1)由题意,得总成本,单位成本,销售总收入,总利润

2)画出的大致图像如图所示.

由图像可知,当时,公司亏损;当时,公司不赔不赚;当时,公司赢利.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】为了调查某社区居民每天参加健身的时间,某机构在该社区随机采访男性、女性各50名,其中每人每天的健身时间不少于1小时称为“健身族”,否则称其为"非健身族”,调查结果如下:

健身族

非健身族

合计

男性

40

10

50

女性

30

20

50

合计

70

30

100

(1)若居民每人每天的平均健身时间不低于70分钟,则称该社区为“健身社区”. 已知被随机采访的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分时间分別是1.2小时,0.8小时,1.5小时,0.7小时,试估计该社区可否称为“健身社区”?

(2)根据以上数据,能否在犯错误的概率不超过5%的情况下认为“健身族”与“性别”有关?

参考公式: ,其中.

参考数据:

0. 50

0. 40

0. 25

0. 05

0. 025

0. 010

0. 455

0. 708

1. 321

3. 840

5. 024

6. 635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了鼓励大家节约用水,自2013年以后,上海市实行了阶梯水价制度,其中每户的综合用水单价与户年用水量的关系如下表所示.

分档

户年用水量

综合用水单价/(元·

第一阶梯

0220(含)

3.45

第二阶梯

220300(含)

4.83

第三阶梯

300以上

5.83

记户年用水量为时应缴纳的水费为元.

1)写出的解析式;

2)假设居住在上海的张明一家2015年共用水,则张明一家2015年应缴纳水费多少元?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在棱长为1的正方体中,点是对角线上的动点(点不重合),则下列结论正确的是____.

①存在点,使得平面平面

②存在点,使得平面

的面积不可能等于

④若分别是在平面与平面的正投影的面积,则存在点,使得.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在矩形ABCD中,已知ABaBCb(a>b),在ABADCBCD上,分别截取AEAHCFCGx(x>0),设四边形EFGH的面积为y.

(1)写出四边形EFGH的面积yx之间的函数关系;

(2)求当x为何值时y取得最大值,最大值是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某中学一位高三班主任对本班50名学生学习积极性和对待班级工作的态度进行调查,得到的统计数据如表所示:

积极参加班级工作

不积极参加班级工作

合计

学习积极性高

18

7

25

学习积极性不高

6

19

25

合计

24

26

50

(1)如果随机调查这个班的一名学生,那么抽到不积极参加班级工作且学习积极性不高的学生的概率是多少?

(2)若不积极参加班级工作且学习积极性高的7名学生中有两名男生,现从中抽取2名学生参加某项活动,问2名学生中有1名男生的概率是多少?

(3)学生的学习积极性与对待班级工作的态度是否有关系?请说明理由.

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,已知圆的方程为,圆的方程为,动圆与圆内切且与圆外切.

(1)求动圆圆心的轨迹的方程;

(2)已知为平面内的两个定点,过点的直线与轨迹交于,两点,求四边形面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近几年来,“精准扶贫”是政府的重点工作之一,某地政府对240户贫困家庭给予政府资金扶助,以发展个体经济,提高家庭的生活水平.几年后,一机构对这些贫困家庭进行回访调查,得到政府扶贫资金数、扶贫贫困家庭数(户)与扶贫后脱贫家庭数(户)的数据关系如下:

政府扶贫资金数(万元)

3

5

7

9

政府扶贫贫困家庭数(户)

20

40

80

100

扶贫后脱贫家庭数(户)

10

30

70

90

(Ⅰ)求几年来该地依靠“精准扶贫”政策的脱贫率是多少;(答案精准到0.1%)

(Ⅱ)从政府扶贫资金数为3万元和7万元并且扶贫后脱贫的家庭中按分层抽样抽取8户,再从这8户中随机抽取两户家庭,求这两户家庭的政府扶贫资金总和为10万元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系曲线的参数方程为 (为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.

(1)的普通方程和直线的倾斜角;

(2)设点交于两点,求.

查看答案和解析>>

同步练习册答案