精英家教网 > 高中数学 > 题目详情

【题目】为了鼓励大家节约用水,自2013年以后,上海市实行了阶梯水价制度,其中每户的综合用水单价与户年用水量的关系如下表所示.

分档

户年用水量

综合用水单价/(元·

第一阶梯

0220(含)

3.45

第二阶梯

220300(含)

4.83

第三阶梯

300以上

5.83

记户年用水量为时应缴纳的水费为元.

1)写出的解析式;

2)假设居住在上海的张明一家2015年共用水,则张明一家2015年应缴纳水费多少元?

【答案】12952.2

【解析】

1)由题意,分别写出的解析式,即可得出的解析式;

2)将代入函数的解析式,即可求出张明一家2015年应缴纳水费.

1)不难看出,是一个分段函数,而且:当时,有

时,有

时,有

因此

2)因为,所以

因此张明一家2015年应缴纳水费952.2元.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

已知曲线的极坐标方程为,以极点为原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程为为参数).

1)判断直线与曲线的位置关系,并说明理由;

2)若直线和曲线相交于两点,且,求直线的斜率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为了调查某社区居民每天参加健身的时间,某机构在该社区随机采访男性、女性各50名,其中每人每天的健身时间不少于1小时称为“健身族”,否则称其为"非健身族”,调查结果如下:

健身族

非健身族

合计

男性

40

10

50

女性

30

20

50

合计

70

30

100

(1)若居民每人每天的平均健身时间不低于70分钟,则称该社区为“健身社区”. 已知被随机采访的男性健身族,男性非健身族,女性健身族,女性非健身族每人每天的平均健分时间分別是1.2小时,0.8小时,1.5小时,0.7小时,试估计该社区可否称为“健身社区”?

(2)根据以上数据,能否在犯错误的概率不超过5%的情况下认为“健身族”与“性别”有关?

参考公式: ,其中.

参考数据:

0. 50

0. 40

0. 25

0. 05

0. 025

0. 010

0. 455

0. 708

1. 321

3. 840

5. 024

6. 635

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】(本小题满分16分)

已知数列{an}的前n项和为Sn,且a1=1Sn=n2ann∈N*.

1)试求出S1S2S3S4,并猜想Sn的表达式;

2)用数学纳法证明你的猜想,并求出an的表达式.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某市2011年至2017年新开楼盘的平均销售价格(单位:千元/平方米)的统计数据如下表:

年份

2011

2012

2013

2014

2015

2016

2017

年份代号

1

2

3

4

5

6

7

销售价格

3

3.4

3.7

4.5

4.9

5.3

6

附:参考公式:,其中为样本平均值。

参考数据:

(1)关于的线性回归方程;

(2)利用(1)中的回归方程,分析2011年至2017年该市新开楼盘平均销售价格的变化情况,并预测该市2019年新开楼盘的平均销售价格。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的离心率为分别为左右焦点分别为左右顶点原点到直线的距离为.设点在第一象限连接交椭圆于点.

(1)求椭圆的方程

(2)若三角形的面积等于四边形的面积求直线的方程

(3)求过点的圆方程(结果用表示.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,底面是直角梯形,且

(1)证明:平面

(2)求平面与平面所成锐二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司生产某种产品的固定成本为150万元,而每件产品的可变成本为2500元,每件产品的售价为3500元,已知该公司所生产的产品能够全部销售出去.

1)分别求出总成本(万元),单位成本(万元),销售总收入(万元),总利润(万元)关于总产量x(件)的函数解析式;

2)由(1)所求得的函数解析式,对这个公司的经济效益作出简单分析.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,多面体ABCDA1B1C1D1为正方体,则下面结论正确的是(  )

A.A1BB1C

B.平面CB1D1⊥平面A1B1C1D1

C.平面CB1D1∥平面A1BD

D.异面直线ADCB1所成的角为30°

查看答案和解析>>

同步练习册答案