【题目】如图,多面体ABCD﹣A1B1C1D1为正方体,则下面结论正确的是( )
A.A1B∥B1C
B.平面CB1D1⊥平面A1B1C1D1
C.平面CB1D1∥平面A1BD
D.异面直线AD与CB1所成的角为30°
【答案】C
【解析】
根据正方体的顶点位置,可判断A1B、B1C是异面直线;平面CB1D1内不存在与平面A1B1C1D1
垂直的直线,平面A1B1C1D1内不存在直线垂直平面CB1D1,平面CB1D1不垂直平面A1B1C1D1;根据面面平行的判断定理可证平面CB1D1∥平面A1BD;根据正方体边的平行关系,可得异面直线AD与CB1所成的角为45°,即可得出结论.
选项A:平面平面平面,
是异面直线,该选项不正确;
选项B:由正方体可知,平面,
平面,
同理平面,
而平面内不存在与平行的直线,
所以平面内不存在直线垂直平面CB1D1;
同理平面CB1D1内不存在垂直平面A1B1C1D1的直线,
所以平面CB1D1不垂直平面A1B1C1D1,故该选项不正确;
选项C:由正方体可得,可证平面,
同理可证平面,根据面面平行的判断定理
可得平面CB1D1∥平面A1BD,故该选项正确;
选项D: ,异面直线AD与CB1所成的角为
而,故该选项不正确.
故选:C
科目:高中数学 来源: 题型:
【题目】为了鼓励大家节约用水,自2013年以后,上海市实行了阶梯水价制度,其中每户的综合用水单价与户年用水量的关系如下表所示.
分档 | 户年用水量 | 综合用水单价/(元·) |
第一阶梯 | 0220(含) | 3.45 |
第二阶梯 | 220300(含) | 4.83 |
第三阶梯 | 300以上 | 5.83 |
记户年用水量为时应缴纳的水费为元.
(1)写出的解析式;
(2)假设居住在上海的张明一家2015年共用水,则张明一家2015年应缴纳水费多少元?
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知圆的方程为,圆的方程为,动圆与圆内切且与圆外切.
(1)求动圆圆心的轨迹的方程;
(2)已知与为平面内的两个定点,过点的直线与轨迹交于,两点,求四边形面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】近几年来,“精准扶贫”是政府的重点工作之一,某地政府对240户贫困家庭给予政府资金扶助,以发展个体经济,提高家庭的生活水平.几年后,一机构对这些贫困家庭进行回访调查,得到政府扶贫资金数、扶贫贫困家庭数(户)与扶贫后脱贫家庭数(户)的数据关系如下:
政府扶贫资金数(万元) | 3 | 5 | 7 | 9 |
政府扶贫贫困家庭数(户) | 20 | 40 | 80 | 100 |
扶贫后脱贫家庭数(户) | 10 | 30 | 70 | 90 |
(Ⅰ)求几年来该地依靠“精准扶贫”政策的脱贫率是多少;(答案精准到0.1%)
(Ⅱ)从政府扶贫资金数为3万元和7万元并且扶贫后脱贫的家庭中按分层抽样抽取8户,再从这8户中随机抽取两户家庭,求这两户家庭的政府扶贫资金总和为10万元的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,已知直线:(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设点的直角坐标为,直线与曲线的交点为,求的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,三棱柱ABC﹣A1B1C1各条棱长均为4,且AA1⊥平面ABC,D为AA1的中点,M,N分别在线段BB1和线段CC1上,且B1M=3BM,CN=3C1N,
(1)证明:平面DMN⊥平面BB1C1C;
(2)求三棱锥B1﹣DMN的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系中,曲线的参数方程为 (为参数),在以原点为极点, 轴正半轴为极轴的极坐标系中,直线的极坐标方程为.
(1)求的普通方程和直线的倾斜角;
(2)设点和交于两点,求.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com