分析 设双曲线的一个焦点F(c,0),一条渐近线方程为y=$\frac{b}{a}$x,运用两直线垂直的条件:斜率之积为-1,可得b=2a,再由离心率公式计算即可得到所求值.
解答 解:设双曲线的一个焦点F(c,0),一条渐近线方程为y=$\frac{b}{a}$x,
由两直线垂直的条件:斜率之积为-1,可得
$\frac{b}{a}$•$\frac{\frac{c}{2}-0}{-c}$=-1,化为b=2a,
可得c=$\sqrt{{a}^{2}+{b}^{2}}$=$\sqrt{5}$a,
即有e=$\frac{c}{a}$=$\sqrt{5}$.
故答案为:$\sqrt{5}$.
点评 本题考查双曲线的离心率的求法,注意运用双曲线的焦点和渐近线方程、两直线垂直的条件以及离心率公式,考查运算能力,属于基础题.
科目:高中数学 来源: 题型:填空题
| t | 30 | 40 | p | 50 | 70 |
| m | 2 | 4 | 5 | 6 | 8 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\overrightarrow{a}-\overrightarrow{b}$ | B. | $\overrightarrow{a}+\overrightarrow{b}$ | C. | $\overrightarrow{b}-\overrightarrow{a}$ | D. | 不能确定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 点P在△ABC外,且△APC的面积为$\frac{1}{3}$S | B. | 点P在△ABC外,且△APC的面积为$\frac{1}{2}$S | ||
| C. | 点P在△ABC内,且△APC的面积为$\frac{1}{3}$S | D. | 点P在△ABC内,且△APC的面积为$\frac{1}{2}$S |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com