分析 (I)由题意可得:|PF′|=|PC|,又|PC|+|PF|=4,可得|PF′|+|PF|=4>|FF′|=2,由椭圆的定义即可得出.
(II)设直线MF:x=ty+1,M(x1,y1),N(x2,y2),与椭圆方程化为:(3t2+4)y2+6ty-9=0,利用根与系数的关系可得:|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$,可得:S△AMN=$\frac{1}{2}$|FA||y1-y2|,代入化简整理利用函数的单调性即可得出.
解答 解:(I)由题意可得:|PF′|=|PC|,又|PC|+|PF|=4,∴|PF′|+|PF|=4>|FF′|=2,
由椭圆的定义可得:2a=4,c=1,
故动点P的轨迹方程E:$\frac{{x}^{2}}{4}+\frac{{y}^{2}}{3}$=1.
(II)设直线MF:x=ty+1,M(x1,y1),N(x2,y2),联立$\left\{\begin{array}{l}{x=ty+1}\\{3{x}^{2}+4{y}^{2}=12}\end{array}\right.$,
化为:(3t2+4)y2+6ty-9=0,
∴y1+y2=$\frac{-6t}{3{t}^{2}+4}$,y1y2=$\frac{-9}{3{t}^{2}+4}$.
∴|y1-y2|=$\sqrt{({y}_{1}+{y}_{2})^{2}-4{y}_{1}{y}_{2}}$=$\sqrt{\frac{36{t}^{2}}{(3{t}^{2}+4)^{2}}+\frac{36}{3{t}^{2}+4}}$=$\frac{12\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$,
∴S△AMN=$\frac{1}{2}$|FA||y1-y2|=$\frac{18\sqrt{{t}^{2}+1}}{3{t}^{2}+4}$=$\frac{18}{3\sqrt{{t}^{2}+1}+\frac{1}{\sqrt{{t}^{2}+1}}}$,
令m=$\sqrt{{t}^{2}+1}$≥1,则函数g(m)=3m+$\frac{1}{m}$在[1,+∞)上单调递增,故g(t)min=g(1)=4,
∴S△AMN≤$\frac{18}{4}$=$\frac{9}{2}$,即当t=0时,△PAB的面积取得最大值,且最大值为$\frac{9}{2}$.
点评 本题考查了椭圆的标准方程及其性质、直线与与相交弦长问题、一元二次方程的根与系数的关系、三角形面积计算公式、函数的单调性、基本不等式的性质,考查了推理能力与计算能力,属于难题.
科目:高中数学 来源: 题型:选择题
| A. | f(x)=-$\frac{1}{x}$ | B. | f(x)=$\sqrt{x}$ | C. | f(x)=$\frac{1}{{2}^{x-1}}$ | D. | f(x)=-tanx |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m≥-1或m≤-4 | B. | m≥4或m≤-1 | C. | -4<m<1 | D. | -1<m<4 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (2,5] | B. | (-∞,-1]∪[5,+∞] | C. | [2,5] | D. | (-∞,-1]∪(5,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | [1,3] | B. | [-3,3] | C. | [-1,0]∪[1,3] | D. | [-3,-1]∪[1,3] |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com