精英家教网 > 高中数学 > 题目详情
10.已知$\frac{sinα}{1+cosα}$=$\frac{1}{3}$,求(sinα-1)(cosα-1)的值.

分析 已知等式整理后,两边平方,利用完全平方公式化简,整理求出cosα的值,进而求出sinα的值,代入原式计算即可得到结果.

解答 解:已知等式整理得:3sinα=1+cosα,
两边平方得:9sin2α=1+cos2α+2cosα,即9-9cos2α=1+cos2α+2cosα,
整理得:5cos2α+cosα-4=0,即(5cosα-4)(cosα+1)=0,
解得:cosα=$\frac{4}{5}$或cosα=-1(不合题意,舍去),
∴sinα=±$\frac{3}{5}$,
当sinα=$\frac{3}{5}$时,原式=($\frac{3}{5}$-1)×($\frac{4}{5}$-1)=$\frac{2}{25}$;当sinα=-$\frac{3}{5}$时,原式=(-$\frac{3}{5}$-1)($\frac{4}{5}$-1)=$\frac{8}{25}$.

点评 此题考查了同角三角函数基本关系的运用,以及三角函数的化简求值,熟练掌握基本关系是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.函数f(x)=cos($\frac{x}{3}$+a)(0<a<2π)在区间[-π,π]单调递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.将体积为1的四面体第一次挖去以各棱中点为顶点构成的多面体,第二次再将剩余的每个四面体均挖去以各棱中点为顶点构成的多面体,如此下去,共进行了n(n∈N*)次,则第一次挖去的几何体的体积是$\frac{1}{2}$;这n次共挖去的所有几何体的体积和是$1-(\frac{1}{2})^{n}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.哈三中3名同学经过层层闯关,最终获得了中国谜语大会银奖,赛后主办方为同行的一位老师、两位家长及这三名同学合影留念,六人站成一排,则这三名同学相邻且老师不站两端的排法有72种(结果用数字作答).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.在平面直角坐标系xOy中,已知点A在椭圆$\frac{x^2}{2}+{y^2}$=1上,点P满足$\overrightarrow{AP}=3\overrightarrow{OA}$,且$\overrightarrow{OA}•\overrightarrow{OP}$=6,则向量$\overrightarrow{OP}$在$\overrightarrow{OA}$方向上的正射影的数量为2$\sqrt{6}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.在平面直角坐标系中,横坐标、纵坐标均为整数的点称为整点,如果函数f(x)的图象恰好通过n(n∈N*)个整点,则称函数f(x)为n阶整点函数.有下列函数中是一阶整点函数的是(  )
①f(x)=x+$\frac{1}{x}$(x>0)②g(x)=x3    ③h(x)=($\frac{1}{3}$)x   ④φ(x)=lnx.
A.①②③④B.①③④C.D.①④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.下列命题中,正确的是②.
①两条直线和第三条直线成等角,则这两条直线平行;
②平行移动两条异面直线中的任何一条,它们所成的角不变;
③过空间四边形ABCD的顶点A引CD的平行线段AE,则∠BAE是异面直线AB与CD所成的角;
④四边相等,且四个角也相等的四边形是正方形.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某村2002年底有住房2万平方米.
(1)设平均每年新建住房住房面积2.3万平方米,求2014年底的住房面积;
(2)到2014年底该村一共拥有多少住房面积?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知数列{an}的首项a1=1,前n项和为Sn,且Sn=2Sn-1+1(n≥2且n∈N*),数列{bn}是等差数列,且b1=a1,b4=a1+a2+a3,设cn=$\frac{1}{{{b_n}{b_{n+1}}}}$,数列{cn}的前n项和为Tn,则T10=$\frac{10}{21}$.

查看答案和解析>>

同步练习册答案