| A. | f(x)=x+$\frac{1}{x}$ | B. | f(x)=sinx+$\frac{1}{sinx}$,x∈(0,$\frac{π}{2}$) | ||
| C. | y=$\frac{{x}^{2}+3}{\sqrt{{x}^{2}+2}}$ | D. | y=$\sqrt{x-1}$+$\frac{1}{\sqrt{x-1}}$ |
分析 A.x<0,f(x)<0,最小值不可能为2,即可判断出正误.
B.由x∈(0,$\frac{π}{2}$),可得sinx∈(0,1),令sinx=t∈(0,1),g(t)=t+$\frac{1}{t}$,利用导数研究其单调性即可判断出正误.
C.y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$,令$\sqrt{{x}^{2}+2}$=t∈[$\sqrt{2}$,+∞),g(t)=t+$\frac{1}{t}$,利用导数研究其单调性即可判断出正误.
D.x>1,令$\sqrt{x-1}$=t∈(0,+∞),g(t)=t+$\frac{1}{t}$,利用导数研究其单调性即可判断出正误.
解答 解:A.x<0,f(x)<0,最小值不可能为2,因此不正确.
B.∵x∈(0,$\frac{π}{2}$),∴sinx∈(0,1),令sinx=t∈(0,1),g(t)=t+$\frac{1}{t}$,y′=1-$\frac{1}{{t}^{2}}$<0,∴函数g(t)单调递减,∴g(t)>g(1)=2,因此不正确.
C.y=$\sqrt{{x}^{2}+2}$+$\frac{1}{\sqrt{{x}^{2}+2}}$,令$\sqrt{{x}^{2}+2}$=t∈[$\sqrt{2}$,+∞),g(t)=t+$\frac{1}{t}$,y′=1-$\frac{1}{{t}^{2}}$>0,∴函数g(t)单调递增,∴g(t)>g($\sqrt{2}$)=$\sqrt{2}$+$\frac{\sqrt{2}}{2}$>2,因此不正确.
D.x>1,令$\sqrt{x-1}$=t∈(0,+∞),g(t)=t+$\frac{1}{t}$,y′=1-$\frac{1}{{t}^{2}}$=$\frac{(t+1)(t-1)}{{t}^{2}}$,∴t=1时,函数g(t)取得最小值,∴g(t)>g(1)=2,因此正确.
故选:D.
点评 本题考查了基本不等式的性质、利用导数研究其单调性极值与最值,考查了推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
| x+$\frac{π}{3}$ | 0 | $\frac{π}{2}$ | π | $\frac{3π}{2}$ | 2π |
| x | -$\frac{π}{3}$ | $\frac{π}{6}$ | $\frac{2π}{3}$ | $\frac{7π}{6}$ | $\frac{5π}{3}$ |
| f(x) | 0 | 1 | 0 | -1 | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (1,+∞) | B. | (-∞,1) | C. | (0,2) | D. | (1,2) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -$\frac{\sqrt{7}}{2}$ | B. | $\frac{\sqrt{7}}{2}$ | C. | $\frac{1}{2}$ | D. | -$\frac{1}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1-a | B. | 2-a | C. | 1+a | D. | 2+a |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com