精英家教网 > 高中数学 > 题目详情
11.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$|a|=2,|b|=\sqrt{3}$,且$\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$)则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

分析 根据$\overrightarrow{b}⊥(\overrightarrow{a}+\overrightarrow{b})$即可得到$\overrightarrow{b}•(\overrightarrow{a}+\overrightarrow{b})=0$,进行数量积的运算便可求出$cos<\overrightarrow{a},\overrightarrow{b}>=-\frac{\sqrt{3}}{2}$,从而求出向量$\overrightarrow{a},\overrightarrow{b}$的夹角.

解答 解:∵$\overrightarrow{b}⊥(\overrightarrow{a}+\overrightarrow{b})$;
∴$\overrightarrow{b}•(\overrightarrow{a}+\overrightarrow{b})=\overrightarrow{a}•\overrightarrow{b}+{\overrightarrow{b}}^{2}$
=$2\sqrt{3}cos<\overrightarrow{a},\overrightarrow{b}>+3$
=0;
∴$cos<\overrightarrow{a},\overrightarrow{b}>=-\frac{\sqrt{3}}{2}$;
∵$\overrightarrow{a}$与$\overrightarrow{b}$夹角的取值范围为[0,π],
∴$\overrightarrow{a},\overrightarrow{b}$的夹角为$\frac{5π}{6}$.
故选:D.

点评 考查向量垂直的充要条件,向量数量积的运算及计算公式,以及向量夹角的范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.双曲线2x2-3y2=k(k<0)的焦点坐标是(用k表示)(0,±$\sqrt{-\frac{5k}{6}}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=|x-1|+a|x+2|.
(Ⅰ)当a=1时,求不等式f(x)≥5的解集;
(Ⅱ)当a<-1时,若f(x)的图象与x轴围成的三角形面积等于6,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.某几何体的三视图如图所示,则该几何体的体积为(  )
A.3$\sqrt{3}$B.$\sqrt{3}$C.$\frac{4}{3}$$\sqrt{3}$D.$\frac{5}{3}$$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左顶点为A,右焦点为F(c,0),直线x=c与双曲线C在第一象限的交点为P,过F的直线l与双曲线C过二、四象限的渐近线平行,且与直线AP交于点B,若△ABF与△PBF的面积的比值为2,则双曲线C的离心率为(  )
A.$\frac{5}{3}$B.$\frac{3\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设变量x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{3x+y-9≤0}\end{array}\right.$,若z=a2x+y(a>0)的最大值为4,则a=$\frac{\sqrt{7}}{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)经过点($\sqrt{2}$,1),且离心率为$\frac{\sqrt{2}}{2}$.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设M、N是椭圆C上的点,直线OM与ON(O为坐标原点)的斜率之积为-$\frac{1}{2}$,若动点P满足$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$,试探究,是否存在两个定点F1,F2,使得|PF1|+|PF2|为定值?若存在,求F1,F2的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{9}$=1的左右焦点分别是F1,F2,椭圆上有一点P,∠F1PF2=30°,则三角形F1PF2的面积为$18-9\sqrt{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.函数f(x)=$\frac{1}{1+{x}^{2}}$的值域是(  )
A.{y|y≠0}B.(0,1]C.(0,1)D.[1,+∞)

查看答案和解析>>

同步练习册答案