精英家教网 > 高中数学 > 题目详情
16.设变量x,y满足$\left\{\begin{array}{l}{x-y+2≥0}\\{x+2y-2≥0}\\{3x+y-9≤0}\end{array}\right.$,若z=a2x+y(a>0)的最大值为4,则a=$\frac{\sqrt{7}}{7}$.

分析 画出满足条件的平面区域,平移关于目标函数的直线,结合图象求出a的值.

解答 解:画出不等式组表示的可行域如图中影部分所示,
由z=a2x+y得y=-a2x+z,
目标函数z的最大值,是直线y=-a2x+z在y轴上的最大截距.
由图形可知,
当直线y=-a2x+z过点A时,在y轴上的截距取得最大值.
由$\left\{{\begin{array}{l}{x-y+2=0}\\{3x+y-9=0}\end{array}}\right.$,解得$A(\frac{7}{4},\frac{15}{4})$,
则$\frac{7}{4}{a^2}+\frac{15}{4}=4$,注意到a>0,
求得$a=\frac{{\sqrt{7}}}{7}$.
故答案为:$\frac{{\sqrt{7}}}{7}$.

点评 本题考查了简单的线性规划问题,考查数形结合思想,是一道中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.在△ABC中,∠A的外角平分线交BC的延长线于D,用正弦定理证明:$\frac{AB}{AC}$=$\frac{BD}{DC}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>0,b>0})$的离心率为$\frac{{\sqrt{3}}}{2}$,经过点($\sqrt{3}$,$\frac{1}{2}$)
(Ⅰ)求椭圆C的标准方程;
(Ⅱ)过点M(-1,0)作直线交椭圆于A,B两点,O是坐标原点,求△OAB的面积的最大值,并求此时直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.过抛物线y2=2px(p>0)的焦点F作直线交抛物线于A,B,若S△OAF=4S△OBF,则直线AB的斜率为(  )
A.±$\frac{3}{5}$B.±$\frac{4}{5}$C.±$\frac{3}{4}$D.±$\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.若向量$\overrightarrow{a}$,$\overrightarrow{b}$满足$|a|=2,|b|=\sqrt{3}$,且$\overrightarrow{b}$⊥($\overrightarrow{a}$+$\overrightarrow{b}$)则$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为(  )
A.$\frac{π}{6}$B.$\frac{π}{3}$C.$\frac{2π}{3}$D.$\frac{5π}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a,b,c分别是三内角A,B,C对应的三边,已知b2+c2=a2+bc.
(1)求角A的大小;
(2)若2sin2$\frac{B}{2}$=cosC,判断△ABC的形状.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.设函数f(x)=$\frac{1}{(x+1)ln(x+1)}$(x>-1且x≠0)
(1)求函数f(x)的单调区间;
(2)求函数f(x)值域
(3)已知2${\;}^{\frac{1}{x+1}}$>(x+1)m对任意x∈(-1,0)恒成立,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.以下四个命题中,其中真命题的个数为(  )
①从匀速传递的产品生产流水线上,质检员每10分钟从中抽取一件产品进行某项指标检测,这样的抽样是分层抽样;
②对于命题p:?x∈R,使得x2+x+1<0.则¬p:?x∈R,均匀x2+x+1≥0
③“x<0”是“ln(x+1)<0”的充分不必要条件;
④“若x+y=0,则x,y互为相反数”的逆命题.
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在区间[2,10]上任取一个数,这个数在区间[5,7]上的概率为(  )
A.$\frac{1}{6}$B.$\frac{1}{4}$C.$\frac{1}{3}$D.$\frac{1}{2}$

查看答案和解析>>

同步练习册答案