分析 分别在△ACD、△ABD中根据正弦定理列式,再将所得的式子相除并利用比例的性质,可得$\frac{AB}{AC}$=$\frac{BD}{DC}$成立.
解答
证明:设∠CAD=∠DAE=β,
在△ACD中,由正弦定理得$\frac{DC}{sinβ}=\frac{AC}{sin∠D}$…①,
在△ABD中,由正弦定理得$\frac{BD}{sin∠BAD}=\frac{AB}{sin∠D}$,即$\frac{BD}{sinβ}=\frac{AB}{sin∠D}$…②
①②两式相除,可得$\frac{AB}{AC}$=$\frac{BD}{DC}$,结论成立.
点评 本题考查利用正弦定理解三角形等知识,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a⊥α,b?α,则a⊥b | B. | 若a⊥α,a∥b,则b⊥α | ||
| C. | 若a⊥b,b⊥α,则a∥α或a?α | D. | 若a∥α,b?α,则a∥b |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 2 | D. | $\sqrt{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com