分析 设AB=2x,则AE=x,BC=$\sqrt{9-{x}^{2}}$,由余弦定理可得x2=9+3x2+9-2×3×$\sqrt{9+3{x}^{2}}$×$\frac{5\sqrt{3}}{9}$,求出x,即可求出球O的直径.
解答 解:设AB=2x,则AE=x,BC=$\sqrt{9-{x}^{2}}$,
∴AC=$\sqrt{9+3{x}^{2}}$
由余弦定理可得x2=9+3x2+9-2×3×$\sqrt{9+3{x}^{2}}$×$\frac{5\sqrt{3}}{9}$,
∴x=1或$\sqrt{6}$,
∴AB=2,BC=2$\sqrt{2}$,球O的直径为$\sqrt{4+4+8}$=4,
或AB=2$\sqrt{6}$,BC=$\sqrt{3}$,球O的直径为$\sqrt{24+24+3}$=$\sqrt{51}$.
故答案为:4或$\sqrt{51}$.
点评 本题考查球O的直径,考查余弦定理,考查学生的计算能力,正确求出AB是关键.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{3}$ | B. | $\frac{1}{4}$ | C. | $\frac{2}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 若a∥α,b∥β,α∥β,则a∥b | |
| B. | 若a∥α,b∥β,a∥b,则α∥β | |
| C. | 若a,b是异面直线,a∥α,b∥β,a?β,b?α,则α∥β | |
| D. | 若a,b是异面直线,a∥α,b∥β,a?β,b?α,则α∥β |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | z的实部为$-\frac{1}{5}$ | B. | z的虚部为$-\frac{1}{5}i$ | ||
| C. | $|z|=\frac{3}{5}$ | D. | z的共轭复数为$\frac{3}{5}+\frac{1}{5}i$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | f(-$\frac{1}{2}$)>f(a2+a+1) | B. | f(-$\frac{1}{2}$)≤f(a2+a+1) | C. | f(-$\frac{1}{2}$)≥f(a2+a+1) | D. | f(-$\frac{1}{2}$)<f(a2+a+1) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com