精英家教网 > 高中数学 > 题目详情
9.已知偶函数y(x)的定义域为R,且在(0,+∞)上单调递增,则下列成立的是(  )
A.f(-$\frac{1}{2}$)>f(a2+a+1)B.f(-$\frac{1}{2}$)≤f(a2+a+1)C.f(-$\frac{1}{2}$)≥f(a2+a+1)D.f(-$\frac{1}{2}$)<f(a2+a+1)

分析 根据函数奇偶性和单调性之间的关系即可得到结论.

解答 解:∵a2+a+1=(a+$\frac{1}{2}$)2+$\frac{3}{4}$>$\frac{1}{2}$,f(x)在(0,+∞)上单调递增,
∴f($\frac{1}{2}$)<f(a2+a+1),
∵f(x)是偶函数,
∴f(-$\frac{1}{2}$)<f(a2+a+1),
故选:D.

点评 本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.在△ABC中,若sinB,sinA,sinC成等差数列,则sinA的取值范围是$({0,\frac{{\sqrt{3}}}{2}}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若向量$\overrightarrow{BA}$=(1,2),$\overrightarrow{CA}$=(4,5),且$\overrightarrow{CB}$•(λ$\overrightarrow{BA}$+$\overrightarrow{CA}$)=0,则实数λ的值为(  )
A.3B.-$\frac{9}{2}$C.-3D.-$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在等比数列{an}中,若a2a5=-$\frac{3}{4}$,a2+a3+a4+a5=$\frac{5}{4}$,则$\frac{1}{a_2}+\frac{1}{a_3}+\frac{1}{a_4}+\frac{1}{a_5}$=(  )
A.1B.$-\frac{3}{4}$C.$-\frac{5}{3}$D.$-\frac{4}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.长方体ABCD-A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,cos∠ACE=$\frac{{5\sqrt{3}}}{9}$,且四边形ABB1A1为正方形,则球O的直径为4或$\sqrt{51}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.log25•log258=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列四式不能化简为$\overrightarrow{AD}$的是(  )
A.$(\overrightarrow{AB}+\overrightarrow{CD})+\overrightarrow{BC}$B.$(\overrightarrow{AD}+\overrightarrow{MB})+(\overrightarrow{BC}+\overrightarrow{CM})$C.$\overrightarrow{OC}-\overrightarrow{OA}+\overrightarrow{CD}$D.$\overrightarrow{MB}+\overrightarrow{AD}-\overrightarrow{BM}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.在R上可导的函数f(x)的图象如图所示,则关于x的不等式x•f′(x)>0的解集为(  )
A.(-∞,-1)∪(0,1)B.(-1,0)∪(1,+∞)C.(-2,-1)∪(1,2)D.(-∞,-2)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设随机事件A,B的对立事件为$\overline{A}$,$\overline{B}$,且P(A)P(B)≠0,则下列说法错误的是(  )
A.若A和B独立,则$\overline{A}$和$\overline{B}$也一定独立B.若P(A)+P($\overline{B}$)=0.2,则P($\overline{A}$)+P(B)=1.8
C.若A和B互斥,则必有P(A|B)=P(B|A)D.若A和B独立,则必有P(A|B)=P(B|A)

查看答案和解析>>

同步练习册答案