精英家教网 > 高中数学 > 题目详情
10.[$\frac{1}{4}$(0.027${\;}^{\frac{2}{3}}}$+50×0.0016${\;}^{\frac{3}{4}}}$)]${\;}^{-\frac{1}{2}}}$=$\frac{20}{7}$.(用数字作答)

分析 由指数幂的运算可得0.027${\;}^{\frac{2}{3}}}$=$((0.3)^{3})^{\frac{2}{3}}$=0.09,0.0016${\;}^{\frac{3}{4}}}$=0.008,从而求得$\frac{1}{4}$(0.027${\;}^{\frac{2}{3}}}$+50×0.0016${\;}^{\frac{3}{4}}}$)=$\frac{49}{400}$,从而求得.

解答 解:∵0.027${\;}^{\frac{2}{3}}}$=$((0.3)^{3})^{\frac{2}{3}}$=0.09,0.0016${\;}^{\frac{3}{4}}}$=0.008,
故$\frac{1}{4}$(0.027${\;}^{\frac{2}{3}}}$+50×0.0016${\;}^{\frac{3}{4}}}$)=$\frac{1}{4}$(0.09+0.4)=$\frac{49}{400}$,
故[$\frac{1}{4}$(0.027${\;}^{\frac{2}{3}}}$+50×0.0016${\;}^{\frac{3}{4}}}$)]${\;}^{-\frac{1}{2}}}$
=$(\frac{49}{400})^{-\frac{1}{2}}$=$\frac{20}{7}$;
故答案为:$\frac{20}{7}$.

点评 本题考查了指数幂的运算的应用,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

20.已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的表面积为(  )
A.153πB.160πC.169πD.360π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.在三角形ABC中,点D在边BC上,CD=2BD,若$\overrightarrow{AB}$=$\overrightarrow{{e}_{1}}$,$\overrightarrow{AC}$=$\overrightarrow{{e}_{2}}$,则$\overrightarrow{AD}$=(  )
A.$\frac{2}{3}{\vec e_1}-\frac{1}{3}{\vec e_2}$B.$\frac{2}{3}{\vec e_1}+\frac{4}{3}{\vec e_2}$C.$\frac{1}{3}{\vec e_1}+\frac{2}{3}{\vec e_2}$D.$\frac{2}{3}{\vec e_1}+\frac{1}{3}{\vec e_2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,AB是半圆O的直径,弦AD、BC相交于点P,∠BPD=α,那么$\frac{CD}{AB}$=(  )
A.cosαB.sinαC.tanαD.$\frac{1}{tanα}$=cotα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.一次数学考试共有12道选择题,每道选择题都有4个选项,其中有且只有一个是正确的,评分标准规定:“每题只有一个正确选项,答对得5分,不答或答错不得分”.某考生已确定有8道题的答案是正确的,其余题中:有两道题都可判断两个选项是错误的,另两道题都可判断有一个选项是错误的,求该考生
(Ⅰ)得60分的概率;
(Ⅱ)所得分数ξ的分布列及其数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆(x-1)2+(y+2)2=5关于原点(0,0)对称的圆的方程为(  )
A.(x-1)2+(y-2)2=5B.(x+1)2+(y-2)2=5C.(x+1)2+(y+2)2=5D.(x-1)2+(y+2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某投资公司对以下两个项目进行前期市场调研:
项目A:通信设备,根据调研,投资到该项目上,所有可能结果为:获利40%、损失20%、不赔不赚,且这三种情况发生的概率分别为$\frac{7}{12}$、$\frac{1}{6}$、a.
项目B:新能源汽车,根据调研,投资到该项目上,所有可能结果为:获利30%、亏损10%,且这两种情况发生的概率分别为b、c.
经测算,当投入A、B两个项目的资金相等时,它们所获得的平均收益(即数学期望)也相等.
(1)求a,b,c的值;
(2)若将100万元全部投到其中的一个项目,请你从风险控制角度为投资公司选择一个合理的项目,说明理由;
(3)若对项目A投资x(0≤x≤100)万元,所获得利润为随机变量Y1,;项目B投资(100-x)万元,所获得利润为随机变量Y2,记f(x)=D(Y1)+D(Y2),当x为何值时,f(x)取到最小值?最小值为多少?
(参考公式:随机变量X的方差:D(X)=$\sum_{i=1}^{n}$(x${\;}_{i}-E(X))^{2}$2pi,D(aX+b)=a2D(x))

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在极坐标系中,已知两点M(2,$\frac{π}{2}}$),N(${\sqrt{2}$,$\frac{7π}{4}}$),沿极轴所在直线把坐标平面折成直二面角后,M、N两点的距离为(  )
A.$\sqrt{10}$B.$\sqrt{6}$C.$\sqrt{22}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=lg(tanx-$\sqrt{3}$)的定义域是$\left\{{x|kπ+\frac{π}{3}<x<kπ+\frac{π}{2},k∈Z}\right\}$.

查看答案和解析>>

同步练习册答案