精英家教网 > 高中数学 > 题目详情
18.如图,AB是半圆O的直径,弦AD、BC相交于点P,∠BPD=α,那么$\frac{CD}{AB}$=(  )
A.cosαB.sinαC.tanαD.$\frac{1}{tanα}$=cotα

分析 链接BD、AC,则∠ADB=90°=∠ACP,根据圆周角定理、直角三角形中的边角关系证得△PCD∽△PAB,从而求得$\frac{CD}{AB}$的值.

解答 解:如图,AB是半圆O的直径,弦AD、BC相交于点P,∠BPD=α,
链接BD、AC,则∠ADB=90°=∠ACP,
cos∠DPB=cosα=$\frac{PD}{PB}$=cos∠APC=$\frac{PC}{AP}$,∴△PCD∽△PAB,∴$\frac{CD}{AB}$=$\frac{PC}{AP}$=cosα,
故选:A.

点评 本题主要考查三角形相似的判定、圆周角定理、直角三角形中的边角关系,作出辅助线,是解题的关键,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.已知不恒为0的函数f(x)满足f(x+2)•f(x)=1,且当x∈[0,4)时,f(x)=|x2-2x-1|,若函数g(x)=f(x)-m在[-4,5]上恰有7个零点,则实数m的取值范围为[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数y=3cos(2x+φ)的图象关于点($\frac{π}{3}$,0)中心对称,那么|φ|的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知a,b,c分别为△ABC三个内角A,B,C的对边.
(Ⅰ)若c=$\sqrt{3}$asinC-c cosA,求角A
(Ⅱ)证明:$\frac{cos2A}{a^2}$-$\frac{cos2B}{b^2}$=$\frac{1}{a^2}$-$\frac{1}{b^2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.给出下列四个命题:
①命题“任意x∈R,x2≥0”的否定是“存在x0∈R,x02≤0”;
②线性相关系数r的绝对值越接近于1,表明两个随机变量线性相关性越强;
③若a,b∈[0,1],则不等式a2+b2<$\frac{1}{4}$成立的概率$\frac{π}{4}$;
④函数y=log2(x2-ax+2)在[2,+∞)上恒为正,则实数a的取值范围是(-∞,$\frac{5}{2}$).
其中真命题的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.正方体的对角线长为a,则它的棱长为$\frac{\sqrt{3}}{3}$a..

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.[$\frac{1}{4}$(0.027${\;}^{\frac{2}{3}}}$+50×0.0016${\;}^{\frac{3}{4}}}$)]${\;}^{-\frac{1}{2}}}$=$\frac{20}{7}$.(用数字作答)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知两个正数m,n,可按规则p=mn+m+n扩充得到一个新数p,在m,n,p三个数中取较大的数,按上述规则扩充得到一个新数,一次进行下去,将每次扩充一次得到一个新数,称为一次操作,若m=1,n=3,按实数规则操作三次,扩充所得的数是255.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.设函数f(x)=x3-4x+a(0<a<2)有三个零点x1,x2,x3,且x1<x2<x3,则下列结论正确的是(  )
A.x1>-1B.x2<0C.x3>2D.0<x2<1

查看答案和解析>>

同步练习册答案