精英家教网 > 高中数学 > 题目详情
3.正方体的对角线长为a,则它的棱长为$\frac{\sqrt{3}}{3}$a..

分析 由已知中正方体的对角线长为a,由正方体的几何特征,可得正方体的对角线长为棱长的$\sqrt{3}$倍,进而得到答案.

解答 解:设正方体的棱长为x,则$\sqrt{3}$x=a,
解得x=$\frac{\sqrt{3}}{3}$a.
故答案为:$\frac{{\sqrt{3}}}{3}a$.

点评 本题考查的知识点是棱柱的结构特征,其中常用几何体如正方形(正六面体),正四面体,棱长与对角线,高,内切球半径,外接球半径等常用结论要熟练掌握.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.方程lnx=$\frac{1}{x}$的解一定位于区间(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知函数f(x)满足f(x+1)=f(x-1),f(x)=f(2-x),且函数y=f(x)在区间[0,1]内有且只有一个零点$\frac{1}{2}$,则y=f(x)在区间[0,2 016]上的零点的个数为(  )
A.2 012B.1 006C.2 016D.1 007

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若函数y=f(x)同时具有下列三个性质:(1)最小正周期为π;(2)图象关于直线x=$\frac{π}{3}$对称;(3)在区间[-$\frac{π}{6}$,$\frac{π}{3}$]上是增函数,则y=f(x)的解析式可以是f(x)=sin(2x-$\frac{π}{6}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,AB是半圆O的直径,弦AD、BC相交于点P,∠BPD=α,那么$\frac{CD}{AB}$=(  )
A.cosαB.sinαC.tanαD.$\frac{1}{tanα}$=cotα

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=(ax2+x-1)•ex(x∈R),f'(x)是函数f(x)的导函数,且f'(-3)=0.
(1)求实数a的值;
(2)求曲线f(x)在(1,f(1))处的切线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.圆(x-1)2+(y+2)2=5关于原点(0,0)对称的圆的方程为(  )
A.(x-1)2+(y-2)2=5B.(x+1)2+(y-2)2=5C.(x+1)2+(y+2)2=5D.(x-1)2+(y+2)2=5

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在矩形ABCD中,AB=$\sqrt{2}$,BC=2,点E为BC的中点,点F在边CD上,若$\overrightarrow{AE}$•$\overrightarrow{BF}$=$\sqrt{2}$.
(Ⅰ)求|$\overrightarrow{DF}$|;
(Ⅱ)求$\overrightarrow{AE}$•$\overrightarrow{AF}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知数列{an}满足an=nkn(n∈N*,0<k<1),下面命题:
①当k=$\frac{1}{2}$时,数列{an}为递减数列;
②当$\frac{1}{2}$<k<1时,数列{an}不一定有最大项;
③当0<k<$\frac{1}{2}$时,数列{an}为递减数列;
④当$\frac{k}{1-k}$为正整数时,数列{an}必有两项相等的最大项.
其中正确命题的序号是③④.

查看答案和解析>>

同步练习册答案