精英家教网 > 高中数学 > 题目详情
8.已知不恒为0的函数f(x)满足f(x+2)•f(x)=1,且当x∈[0,4)时,f(x)=|x2-2x-1|,若函数g(x)=f(x)-m在[-4,5]上恰有7个零点,则实数m的取值范围为[1,2).

分析 根据函数性质求出f(x)的周期,作出f(x)的函数图象,根据图象得出m的范围.

解答 解:∵f(x+2)•f(x)=1,∴f(x-2)•f(x)=1,
∴f(x+2)=$\frac{1}{f(x)}$,f(x-2)=$\frac{1}{f(x)}$,∴f(x+2)=f(x-2),
∴f(x)的周期为4.
令g(x)=0得f(x)=m,作出f(x)在[-4,5]的函数图象如图所示:

由图象可知当1≤m<2时,f(x)=m在[-4,5]上有7个零点,
故答案为:[1,2).

点评 本题考查了函数的周期性,函数的零点与函数图象的关系,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

18.已知等差数列{an}的首项a1=1,且公差d>0,它的第2项、第5项、第14项分别是等比数列{bn}的第2、3、4项.
(1)求数列{an}与{bn}的通项公式;
(2)设数列{cn}对任意正整数n均有$\frac{{c}_{1}}{{b}_{1}}$+$\frac{c_2}{b_2}$+…+$\frac{c_n}{b_n}$=an+1成立,求a1c1+a2c2+…+ancn的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在△ABC中,若sinA•cosB•tanC<0,则△ABC的形状是(  )
A.锐角三角形B.钝角三角形C.直角三角形D.不能确定

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知集合A={a+8,a2-a},若6∈A,则实数a的值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.在两个变量y与x的回归模型中,分别选择了四个不同的模型,它的相关指数R2如下,其中拟合效果最好的模型是(  )
A.模型1的相关指数R2为0.87B.模型2的相关指数R2为0.97
C.模型3的相关指数R2为0.50D.模型4的相关指数R2为0.25

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.方程lnx=$\frac{1}{x}$的解一定位于区间(  )
A.(1,2)B.(2,3)C.(3,4)D.(4,5)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的表面积为(  )
A.153πB.160πC.169πD.360π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.求函数y=$\sqrt{lo{g}_{a}(x-1)}$(a>0且a≠1)的定义域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,AB是半圆O的直径,弦AD、BC相交于点P,∠BPD=α,那么$\frac{CD}{AB}$=(  )
A.cosαB.sinαC.tanαD.$\frac{1}{tanα}$=cotα

查看答案和解析>>

同步练习册答案