精英家教网 > 高中数学 > 题目详情
20.已知三棱柱ABC-A1B1C1的6个顶点都在球O的球面上,若AB=3,AC=4,AB⊥AC,AA1=12,则球O的表面积为(  )
A.153πB.160πC.169πD.360π

分析 由于直三棱柱ABC-A1B1C1的底面ABC为直角三角形,我们可以把直三棱柱ABC-A1B1C1补成四棱柱,则四棱柱的体对角线是其外接球的直径,求出外接球的直径后,代入外接球的表面积公式,即可求出该三棱柱的外接球的表面积.

解答 解:由题意,三棱柱ABC-A1B1C1为直三棱柱ABC-A1B1C1,底面ABC为直角三角形,把直三棱柱ABC-A1B1C1补成四棱柱,
则四棱柱的体对角线是其外接球的直径,
所以外接球半径为$\frac{1}{2}\sqrt{{3}^{2}+{4}^{2}+1{2}^{2}}$=$\frac{13}{2}$,
则三棱柱ABC-A1B1C1外接球的表面积是4πR2=169π.
故选:C.

点评 本题考查球的体积和表面积,球的内接体问题,考查学生空间想象能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.函数f(x)=log8x-$\frac{7}{x}$的零点所在的区间是(  )
A.(4,5)B.(5,6)C.(6,7)D.(7,8)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.在△ABC中,sinA=$\frac{1}{3}$,且△ABC的外接圆半径R=2,则a=(  )
A.$\frac{1}{6}$B.$\frac{2}{3}$C.$\frac{4}{3}$D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知不恒为0的函数f(x)满足f(x+2)•f(x)=1,且当x∈[0,4)时,f(x)=|x2-2x-1|,若函数g(x)=f(x)-m在[-4,5]上恰有7个零点,则实数m的取值范围为[1,2).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(x)=ax3-3x2+1在区间(0,2]上有两个不同的零点,则实数a的取值范围是[$\frac{11}{8}$,2).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.若复数z=i(3-2i)(i是虚数单位),则z的虚部为(  )
A.3B.3iC.-2D.-2i

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=loga(x+1)-loga(1-x),其中a>0且a≠1.
(1)判断f(x)的奇偶性并予以证明;
(2)若a>1,解关于x的不等式f(x)>0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若函数y=3cos(2x+φ)的图象关于点($\frac{π}{3}$,0)中心对称,那么|φ|的最小值为(  )
A.$\frac{π}{6}$B.$\frac{π}{4}$C.$\frac{π}{3}$D.$\frac{π}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.[$\frac{1}{4}$(0.027${\;}^{\frac{2}{3}}}$+50×0.0016${\;}^{\frac{3}{4}}}$)]${\;}^{-\frac{1}{2}}}$=$\frac{20}{7}$.(用数字作答)

查看答案和解析>>

同步练习册答案