精英家教网 > 高中数学 > 题目详情
12.化简$\frac{\sqrt{3}}{cos10°}$-$\frac{1}{sin170°}$.

分析 根据二倍角公式,两角和差的正弦公式,诱导公式化简即可.

解答 解:$\frac{\sqrt{3}}{cos10°}$-$\frac{1}{sin170°}$=$\frac{\sqrt{3}}{cos10°}$-$\frac{1}{sin10°}$
=$\frac{\sqrt{3}sin10°-cos10°}{sin10°cos10°}$
=$\frac{4(\frac{\sqrt{3}}{2}sin10°-\frac{1}{2}cos10°)}{2sin10°cos10°}$
=$\frac{4sin(10°-30°)}{sin20°}$
=$\frac{-4sin20°}{sin20°}$
=-4.

点评 本题考查了二倍角公式,两角和差的正弦公式,以及诱导公式的应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

2.2016年8月江西某高校的成立了一个社会实践调查小组,在对大学生的“4G使用流量问题”的调查中,随机发放了120份问卷,对收回的100份有效问卷进行统计,得到如下2×2列联表:
流量超过1000M流量没有超过1000M合计
202545
401555
合计6040100
(1)现已按4G使用流量问题采用分层抽样从45份男生问卷中抽取了9份问卷,试问应该从“流量超过1000M”和“流量没有超过1000M”各抽取多少人?
(2)如果认为良好“4G使用流量问题”与性别有关犯错误的概率不超过P,那么根据临界值表最精确的P的值应为多少?请说明理由.
附:独立性检验统计量K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d,
独立性检验临界表:
P(K2≥k00.250.150.100.050.025
k01.3232.0722.7063.8405.024

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.设i是虚数单位,若复数$a-\frac{10}{3-i}(a∈R)$是纯虚数,则a的值为(  )
A.3B.-1C.-3D.1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的左焦点为F,若F关于直线$\sqrt{3}x$+y=0的对称点A是椭圆C上的点,则椭圆C的离心率为$\sqrt{3}-1$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的离心率为$\frac{{\sqrt{6}}}{3}$,短轴的一个端点到右焦点的距离是$\sqrt{3}$
(1)求椭圆C的方程;
(2)直线y=x+1交椭圆于A、B两点,P为椭圆上的一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.在△ABC中,“cosB=$\frac{1}{2}$”是“A、B、C成等差数列”的(  )
A.充分非必要条件B.必要非充分条件
C.充要条件D.既非充分又非必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数$f(x)=\overrightarrow m•\overrightarrow n$,其中$\overrightarrow m=(2cosx,1),\overrightarrow n=(cosx,\sqrt{3}sin2x),x∈R$
(1)求出f(x)的最小正周期和单调递减区间;
(2)求f(x)在[$-\frac{π}{6},\frac{π}{4}]$上最大值与最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f (x)=ex-$\frac{1}{2}$x2-x-1,函数f′(x)为f (x)的导函数.
(I)求函数f′(x)的单调区间和极值;
(II)已知函数y=g (x)的图象与函数y=f (x)的图象关于原点对称,证明:当x>0时,f (x)>g (x);
(Ⅲ)如果x1≠x2,且f (x1)+f (x2)=0,证明:x1+x2<0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.“2<m<6”是“方程$\frac{{x}^{2}}{m-2}$+$\frac{{y}^{2}}{6-m}$=1为椭圆方程”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案