精英家教网 > 高中数学 > 题目详情
设函数f(x)=
2x
|x|+1
(x∈R)
,区间M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有(  )
分析:由已知中函数f(x)=
2x
|x|+1
(x∈R)
,我们易判断出函数的单调性及奇偶性,进而根据M=N成立时,f(a)=a且f(b)=b,解方程f(x)=
2x
|x|+1
=x
,进而可由列举法,求出答案.
解答:解:∵函数f(x)=
2x
|x|+1
(x∈R)
为奇函数,
且函数在R为增函数
若M=N成立
∴f(a)=a且f(b)=b
f(x)=
2x
|x|+1
=x

解得x=0,或x=±1
故使M=N成立的实数对(a,b)有(-1,0),(-1,1),(0,1)三组
故选B
点评:本题考查的知识点是集合关系中的参数取值问题,函数的值域,函数单调性的应用,其中根据已知中函数的解析式求确定出函数的单调性,并由M=N成立得到f(a)=a且f(b)=b,是解答本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x+1x2+2

(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若对一切x∈R,-3≤af(x)+b≤3,求a-b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)设函数f(x)=
2x+3
3x-1
,则f-1(1)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
x+2
,点A0表示原点,点An=[n,f(n)](n∈N*).若向量
an
=
A0A1
+
A1A2
+…+
An-1An
,θn
an
i
的夹角[其中
i
=(1,0)]
,设Sn=tanθ1+tanθ2+…+tanθn,则
lim
n→∞
Sn
=
3
4
2
3
4
2

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x-3,x≥1
1-3x
x
,0<x<1
,若f(x0)=1,则x0等于(  )

查看答案和解析>>

同步练习册答案