精英家教网 > 高中数学 > 题目详情
设函数f(x)=
2x-3,x≥1
1-3x
x
,0<x<1
,若f(x0)=1,则x0等于(  )
分析:根据解析式对x0分类讨论,再分别根据解析式列出方程,解之即可求出x0的值.
解答:解:f(x0)=1,
①当x0≥1时,则有2x0-3=1,
∴x0=2;
②当0<x0<1时,则有
1-3x0
x0
=1,
∴x0=
1
4

综合①②,可得x0=
1
4
或2.
故选C.
点评:本题考查了分段函数的求值问题,对于分段函数的问题,一般选用数形结合和分类讨论的数学思想方法进行处理.本题选用分类讨论的思想进行解题.属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设函数f(x)=
2x+1x2+2

(Ⅰ)求f(x)的单调区间和极值;
(Ⅱ)若对一切x∈R,-3≤af(x)+b≤3,求a-b的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2x
|x|+1
(x∈R)
,区间M=[a,b](其中a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•重庆三模)设函数f(x)=
2x+3
3x-1
,则f-1(1)
=(  )

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
2
x+2
,点A0表示原点,点An=[n,f(n)](n∈N*).若向量
an
=
A0A1
+
A1A2
+…+
An-1An
,θn
an
i
的夹角[其中
i
=(1,0)]
,设Sn=tanθ1+tanθ2+…+tanθn,则
lim
n→∞
Sn
=
3
4
2
3
4
2

查看答案和解析>>

同步练习册答案