直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=
,AA′=1,点M,N分别为A′B和B′C′的中点.
![]()
(1)证明:MN∥平面A′ACC′;
(2)求三棱锥A′-MNC的体积.(锥体体积公式V=
Sh,其中S为底面面积,h为高)
(1)见解析 (2)![]()
【解析】【解析】
(1)证法一:连接AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,
![]()
所以M为AB′中点.又因为N为B′C′的中点,
所以MN∥AC′.
又MN?平面A′ACC′,AC′?平面A′ACC′,
因此MN∥平面A′ACC′.
证法二:取A′B′中点P,连接MP,NP.
而M,N分别为AB′与B′C′的中点,
所以MP∥AA′,PN∥A′C′,
所以MP∥平面A′ACC′,PN∥平面A′ACC′.
又MP∩NP=P,因此平面MPN∥平面A′ACC′.
而MN?平面MPN,因此MN∥平面A′ACC′.
(2)解法一:连接BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC.
又A′N=
B′C′=1,
故VA′-MNC=VN-A′MC=
VN-A′BC=
VA′-NBC=
.
解法二:VA′-MNC=VA′-NBC-VM-NBC=
VA′-NBC=
.
科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-2直线的交点坐标与距离公式(解析版) 题型:解答题
已知定点M(0,2),N(-2,0),直线l:kx-y-2k+2=0(k为常数).
(1)若点M,N到直线l的距离相等,求实数k的值;
(2)对于l上任意一点P,∠MPN恒为锐角,求实数k的取值范围.
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:选择题
平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是( )
A.(
,-1,-1) B.(6,-2,-2)
C.(4,2,2) D.(-1,1,4)
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题
如图,在棱长为4的正四面体A-BCD中,M是BC的中点,点P在线段AM上运动(P不与A,M重合),过点P作直线l⊥平面ABC,l与平面BCD交于点Q,给出下列命题:①BC⊥平面AMD;②Q点一定在直线DM上;③VC-AMD=4
.
![]()
其中正确命题的序号是( )
A.①② B.①③ C.②③ D.①②③
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题
如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在( )
![]()
A.直线AB上 B.直线BC上
C.直线AC上 D.△ABC内部
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:填空题
如图,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.
![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题
设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是( )
A.m∥β且l1∥α B.m∥l1且n∥l2
C.m∥β且n∥β D.m∥β且n∥l2
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-2空间几何体的表面积和体积(解析版) 题型:解答题
如图所示,在边长为5+
的长方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.
![]()
查看答案和解析>>
科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:选择题
设a,b∈R,则“a+b=1”是“4ab≤1”的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com