精英家教网 > 高中数学 > 题目详情

直三棱柱ABC-A′B′C′,∠BAC=90°,AB=AC=,AA′=1,点M,N分别为A′B和B′C′的中点.

(1)证明:MN∥平面A′ACC′;

(2)求三棱锥A′-MNC的体积.(锥体体积公式V=Sh,其中S为底面面积,h为高)

 

(1)见解析 (2)

【解析】【解析】
(1)证法一:连接AB′,AC′,由已知∠BAC=90°,AB=AC,三棱柱ABC-A′B′C′为直三棱柱,

所以M为AB′中点.又因为N为B′C′的中点,

所以MN∥AC′.

又MN?平面A′ACC′,AC′?平面A′ACC′,

因此MN∥平面A′ACC′.

证法二:取A′B′中点P,连接MP,NP.

而M,N分别为AB′与B′C′的中点,

所以MP∥AA′,PN∥A′C′,

所以MP∥平面A′ACC′,PN∥平面A′ACC′.

又MP∩NP=P,因此平面MPN∥平面A′ACC′.

而MN?平面MPN,因此MN∥平面A′ACC′.

(2)解法一:连接BN,由题意A′N⊥B′C′,平面A′B′C′∩平面B′BCC′=B′C′,所以A′N⊥平面NBC.

又A′N=B′C′=1,

故VA′-MNC=VN-A′MC=VN-A′BC=VA′-NBC=.

解法二:VA′-MNC=VA′-NBC-VM-NBC=VA′-NBC=.

 

练习册系列答案
相关习题

科目:高中数学 来源:2015高考数学(理)一轮配套特训:8-2直线的交点坐标与距离公式(解析版) 题型:解答题

已知定点M(0,2),N(-2,0),直线l:kx-y-2k+2=0(k为常数).

(1)若点M,N到直线l的距离相等,求实数k的值;

(2)对于l上任意一点P,∠MPN恒为锐角,求实数k的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-7立体几何中的向量方法(解析版) 题型:选择题

平面α经过三点A(-1,0,1),B(1,1,2),C(2,-1,0),则下列向量中与平面α的法向量不垂直的是(  )

A.(,-1,-1) B.(6,-2,-2)

C.(4,2,2) D.(-1,1,4)

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题

如图,在棱长为4的正四面体A-BCD中,M是BC的中点,点P在线段AM上运动(P不与A,M重合),过点P作直线l⊥平面ABC,l与平面BCD交于点Q,给出下列命题:①BC⊥平面AMD;②Q点一定在直线DM上;③VC-AMD=4.

其中正确命题的序号是(  )

A.①② B.①③ C.②③ D.①②③

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-5直线、平面垂直的判定及性质(解析版) 题型:选择题

如图,在斜三棱柱ABC-A1B1C1中,∠BAC=90°,BC1⊥AC,则C1在底面ABC上的射影H必在(  )

A.直线AB上 B.直线BC上

C.直线AC上 D.△ABC内部

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:填空题

如图,在正四棱柱ABCD-A1B1C1D1中,E,F,G,H分别是棱CC1,C1D1,D1D、DC的中点,N是BC的中点,点M在四边形EFGH及其内部运动,则M满足条件________时,有MN∥平面B1BDD1.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-4直线、平面平行的判定及性质(解析版) 题型:选择题

设m,n是平面α内的两条不同直线;l1,l2是平面β内的两条相交直线,则α∥β的一个充分而不必要条件是(  )

A.m∥β且l1∥α B.m∥l1且n∥l2

C.m∥β且n∥β D.m∥β且n∥l2

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:7-2空间几何体的表面积和体积(解析版) 题型:解答题

如图所示,在边长为5+的长方形ABCD中,以A为圆心画一个扇形,以O为圆心画一个圆,M,N,K为切点,以扇形为圆锥的侧面,以圆O为圆锥底面,围成一个圆锥,求圆锥的全面积与体积.

 

 

查看答案和解析>>

科目:高中数学 来源:2015高考数学(理)一轮配套特训:6-6直接证明与间接证明(解析版) 题型:选择题

设a,b∈R,则“a+b=1”是“4ab≤1”的(  )

A.充分不必要条件 B.必要不充分条件

C.充要条件 D.既不充分也不必要条件

 

查看答案和解析>>

同步练习册答案