精英家教网 > 高中数学 > 题目详情
9.点E,F分别是正方形ABCD的边AB和CD上的点且AB=2AE,CD=4FD,点P为线段EF上的动点$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$,则$\frac{1}{x}$+$\frac{1}{y}$的最小值为$\frac{9}{2}$.

分析 用$\overrightarrow{AE},\overrightarrow{AF}$表示出$\overrightarrow{AP}$,利用三点共线原理得出x,y的关系,使用基本不等式得出最小值.

解答 解:∵AB=2AE,CD=4FD,∴$\overrightarrow{AB}=2\overrightarrow{AE}$,$\overrightarrow{DF}$=$\frac{1}{4}\overrightarrow{DC}=\frac{1}{4}\overrightarrow{AB}$,
∴$\overrightarrow{AD}=\overrightarrow{AF}-\overrightarrow{DF}$=$\overrightarrow{AF}-\frac{1}{4}\overrightarrow{AB}$=$\overrightarrow{AF}-\frac{1}{2}\overrightarrow{AE}$,
∴$\overrightarrow{AP}$=x$\overrightarrow{AB}$+y$\overrightarrow{AD}$=2x$\overrightarrow{AE}$+y($\overrightarrow{AF}-\frac{1}{2}\overrightarrow{AE}$)=(2x-$\frac{y}{2}$)$\overrightarrow{AE}$+y$\overrightarrow{AF}$.
∵E,F,P三点共线,∴2x-$\frac{y}{2}$+y=1,即2x+$\frac{y}{2}$=1.
∴$\frac{1}{x}$+$\frac{1}{y}$=$\frac{2x+\frac{y}{2}}{x}$+$\frac{2x+\frac{y}{2}}{y}$=$\frac{y}{2x}$+$\frac{2x}{y}$+$\frac{5}{2}$≥2+$\frac{5}{2}$=$\frac{9}{2}$.
故答案为$\frac{9}{2}$.

点评 本题考查了平面向量的基本定理,基本不等式的应用,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.经过两点$A({m,\sqrt{3}})$,$B({-m,-\sqrt{3}m})$的直线的倾斜角为30°,则m=(  )
A.-3B.$-\frac{3}{5}$C.$-\frac{1}{3}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知等差数列{an}的前n项和为Sn,若S8-S2=30,则S10=(  )
A.40B.45C.50D.55

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.甲、乙两人约定晚上6点到7点之间在某地见面,并约定先到者要等候另一人半小时,过时即可离开.求甲、乙能见面的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若f(x)=3x+5,则f-1(x)的定义域是(  )
A.(0,+∞)B.(5,+∞)C.(8,+∞)D.(-∞,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.作出函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+1,x≤0}\\{-2x+2,x>0}\end{array}\right.$ 的图象并写出函数的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)=$\left\{\begin{array}{l}{-{x}^{2}-4x-3,(x<-1)}\\{1-|x|,(x≥-1)}\end{array}\right.$,若f(f(m))≥0,则实数m的取值范围是[-4,4].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.函数y=$\sqrt{k{x}^{2}-6kx+k+8}$的定义域为一切实数,则k的取值范围是(  )
A.k>0或k≤-9B.k≥1C.-9≤k≤1D.0≤k≤1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知函数$f(x)=\left\{\begin{array}{l}1,\;\;-1≤x≤0\\ \frac{1}{x},\;\;x>0\end{array}\right.$,则使方程x+f(x)=m有解的实数m的取值范围是(  )
A.(-∞,0)∪(1,2)B.[0,+∞)C.(-∞,1]∪[2,+∞)D.[0,1]∪[2,+∞)

查看答案和解析>>

同步练习册答案