精英家教网 > 高中数学 > 题目详情
8.下列命题中,假命题是(  )
A.?x∈R,lgx=0B.?x∈R,tanx=0C.?x∈R,x3=0D.?x∈R,2x>0

分析 根据特称命题和全称命题的定义分别进行判断即可.

解答 解:A.当x=1时,lgx=0,则命题?x∈R,lgx=0为真命题,
B.当x=kπ时,tanx=0,则命题?x∈R,tanx=0为真命题,
C.因为(-1)3=-1<0,所以?x∈R,x3=0不正确.
D.?x∈R,2x>0,恒成立,为真命题,
故选:C

点评 本题主要考查命题的真假判断,涉及含有量词的命题的否定,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

18.函数y=4tan(2x+$\frac{π}{3}$)+1的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x-4|≥m对一切实数x均成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设f(x)是定义在(-∞,+∞)上的偶函数,且它在[0,+∞)上单调递增,若a=f(log${\;}_{\sqrt{2}}$$\frac{1}{\sqrt{3}}$),b=f(log${\;}_{\sqrt{3}}$$\frac{1}{\sqrt{2}}$),c=f(-2),则a,b,c的大小关系是b<a<c(从小到大排)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图,在棱长为1的正方体ABCD-A1B1C1D1中,E,F,G分别为棱AA1,BB1,A1B1的中点,则点G到平面EFD1的距离为(  )
A.$\frac{\sqrt{3}}{2}$B.$\frac{\sqrt{2}}{2}$C.$\frac{1}{2}$D.$\frac{\sqrt{5}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数f(x)=$\frac{1}{2}$sin$\frac{π}{2}$x+1,s=f(0)+f(1)+f(2)+…+f(2006)的值是(  )
A.2006B.2006$\frac{1}{2}$C.2007$\frac{1}{2}$D.2007

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.班主任为了对本班学生的考试成绩进行分析,决定从全班36名女同学,24名男同学中随机抽取一个容量为5的样本进行分析.
(1)如果按性别比例分层抽样,男女学生各抽几个人?
(2)若这5位同学的政治、历史分数对应如表:
学生编号12345
政治分数x8991939597
历史分数y8789899293
根据上表数据,用变量y与x的相关系数或散点图说明政治成绩y与历史成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$;回归直线的方程是:$\stackrel{∧}{y}$=bx+a,其中对应的回归估计值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\stackrel{∧}{{y}_{i}}$是与xi对应的回归估计值.参考值:$\sqrt{15}$≈3.9.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.若c>1,0<b<a<1,则(  )
A.ac<bcB.bac<abcC.alogbc<blogacD.logac<logbc

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左顶点为A1,右焦点为F2,过点F2作垂直于x轴的直线交该椭圆于M,N两点,直线A1M的斜率为$\frac{1}{2}$.
(1)求椭圆的离心率;
(2)若△A1MN的外接圆在M处的切线与椭圆交于另一点D,且△F2 MD的面积为$\frac{12}{7}$,求该椭圆方程.

查看答案和解析>>

同步练习册答案