精英家教网 > 高中数学 > 题目详情
20.班主任为了对本班学生的考试成绩进行分析,决定从全班36名女同学,24名男同学中随机抽取一个容量为5的样本进行分析.
(1)如果按性别比例分层抽样,男女学生各抽几个人?
(2)若这5位同学的政治、历史分数对应如表:
学生编号12345
政治分数x8991939597
历史分数y8789899293
根据上表数据,用变量y与x的相关系数或散点图说明政治成绩y与历史成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$;回归直线的方程是:$\stackrel{∧}{y}$=bx+a,其中对应的回归估计值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\stackrel{∧}{{y}_{i}}$是与xi对应的回归估计值.参考值:$\sqrt{15}$≈3.9.

分析 (1)做出女生和男生在总人数中所占的比例,用比例乘以要抽取的样本容量,得到结果.
(2)先求出两个变量的平均数,再利用最小二乘法做出线性回归方程的系数,把做出的系数和x,y的平均数代入公式,求出a的值,写出线性回归方程,得到结果.

解答 解:(1)男生5×$\frac{24}{60}$=2人,女生5×$\frac{36}{60}$=3人;
(2)可求得:$\overline{x}$=$\frac{1}{5}$(89+91+93+95+97)=93,$\overline{y}$=$\frac{1}{5}$(87+89+89+92+93)=90,
$\sum_{i=1}^{5}$$({x}_{i}-\overline{x})^{2}$=40,$\sum_{i=1}^{5}$$({y}_{i}-\overline{y})^{2}$=24,$\sum_{i=1}^{5}$$({x}_{i}-\overline{x})({y}_{i}-\overline{y})$=30,
r=$\frac{30}{\sqrt{40×24}}$≈0.97,有较强的线性相关关系,
b=$\frac{30}{40}$=0.75,a=20.25,线性回归方程是y=0.75x+20.25.

点评 本题考查线性回归分析的初步应用,考查分层抽样,考查了学生的数据处理能力和应用意识,考查利用数学知识解决实际问题的能力,是一个比较好的综合题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.若△ABC的内切圆面积为3π,三角形面积是10$\sqrt{3}$,A=60°,则BC边的长是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.函数f(x)=sinx与g(x)=tanx•cosx表示不同(相同或不同)的函数.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.下列命题中,假命题是(  )
A.?x∈R,lgx=0B.?x∈R,tanx=0C.?x∈R,x3=0D.?x∈R,2x>0

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.设a=1.60.3,b=log2$\frac{1}{9}$,c=0.81.6,则a,b,c的大小关系是a>c>b.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.α,β是两个平面,m,n是两条直线,有下列四个命题:
①如果m⊥n,m⊥α,n∥β,那么α⊥β
②如果m⊥α,α∥α,那么m⊥n
③如果α∥β,m?α,那么m∥β
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题为(  )
A.②③④B.①②④C.①③④D.①②④

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在斜三棱柱ABC-A1B1C1中,点O、E分别是A1C1、AA1的中点,AO⊥平面A1B1C1.已知∠BCA=90°,AA1=AC=BC=2.
(1)证明:OE∥平面AB1C1
(2)证明:AB1⊥A1C;
(3)求A1C1与平面AA1B1所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.如图,在三棱柱ABC-A1B1C1中,M,N分别为AB,B1C1的中点.
(I)求证:MN∥平面AA1C1C;
(II) 若CC1=CB1,CA=CB,平面CC1B1B⊥平面ABC,求证:AB⊥平面CMN
(III)若直线A1B1与平面CMN的交点为D,试确定$\frac{{B}_{1}D}{{A}_{1}{B}_{1}}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知函数f(x)=2cosx(sinx-cosx),x∈R,则f($\frac{π}{4}$)=0,f(x)的最大值是$\sqrt{2}$-1.

查看答案和解析>>

同步练习册答案