精英家教网 > 高中数学 > 题目详情
10.若△ABC的内切圆面积为3π,三角形面积是10$\sqrt{3}$,A=60°,则BC边的长是(  )
A.5B.6C.7D.8

分析 设三角形ABC内切圆心为O,半径为r,与AB,AC,BC分别切于E,F,D,由已知可求∠EAO=∠FAO=30°,利用圆的面积可求r,进而可求AE=AF=3,由BE=BD,CF=CD,可求AB+AC+BC=6+2BC,根据三角形面积公式即可解得BC的值.

解答 解:设三角形ABC内切圆心为O,半径为r,与AB,AC,BC分别切于E,F,D
则AO平分∠BAC,OE=OF=OD=r,
因∠A=60°,
所以∠EAO=∠FAO=30°,
因为:△ABC的内切圆面积为3π=πr2,解得:r=$\sqrt{3}$,
所以:AE=$\frac{r}{tan30°}$=$\frac{\sqrt{3}}{\frac{\sqrt{3}}{3}}$=3,
得:AE=AF=3,BE=BD,CF=CD,
所以:AB+AC+BC=AE+EB+AF+FC+BC=3+3+(EB+FC)+BC=3+3+2BC=6+2BC,
因为:S=$\frac{1}{2}$(AB+AC+BC )•r=$\frac{\sqrt{3}}{2}$(AB+AC+BC )=10$\sqrt{3}$,解得:AB+AC+BC=20,可得:6+2BC=20,
所以:解得:BC=7.
故选:C.

点评 本题主要考查了三角形面积公式,三角形内切圆的性质,三角函数定义在解三角形中的综合应用,考查了数形结合思想和转化思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

20.若一扇形的圆心角为3弧度,且此扇形周长为5,则此扇形的面积S=$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有下列数组排成一排:$(\frac{1}{1}),(\frac{2}{1},\frac{1}{2}),(\frac{3}{1},\frac{2}{2},\frac{1}{3}),(\frac{4}{1},\frac{3}{2},\frac{2}{3},\frac{1}{4}),(\frac{5}{1},\frac{4}{2},\frac{3}{3},\frac{2}{4},\frac{1}{5}),…$如果把上述数组中的括号都去掉会形成一个数列:$\frac{1}{1},\frac{2}{1},\frac{1}{2},\frac{3}{1},\frac{2}{2},\frac{1}{3},\frac{4}{1},\frac{3}{2},\frac{2}{3},\frac{1}{4},\frac{5}{1},\frac{4}{2},\frac{3}{3},\frac{2}{4},\frac{1}{5}$,…有同学观察得到$\frac{63×64}{2}$=2016,据此,该数列中的第2012项是$\frac{5}{59}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=4tan(2x+$\frac{π}{3}$)+1的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.地球赤道的半径为6370km,则赤道上1弧度角所对的圆弧长为6370km.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面四边形ABCD中,
(1)若已知AD=8,CD=6,AB=13,∠ADC=90°,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=50.求sin∠BAD的值;
(2)若AC=3,BD=2,求($\overrightarrow{AB}$+$\overrightarrow{DC}$)•($\overrightarrow{AC}$+$\overrightarrow{BD}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数f(x)=2x3-bx2+cx+d的图象过点P(0,2),且在点M(1,f(1))处的切线方程为x-y-2=0.
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)求函数y=f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=|2x+1|-|x-4|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x-4|≥m对一切实数x均成立,求m的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.班主任为了对本班学生的考试成绩进行分析,决定从全班36名女同学,24名男同学中随机抽取一个容量为5的样本进行分析.
(1)如果按性别比例分层抽样,男女学生各抽几个人?
(2)若这5位同学的政治、历史分数对应如表:
学生编号12345
政治分数x8991939597
历史分数y8789899293
根据上表数据,用变量y与x的相关系数或散点图说明政治成绩y与历史成绩x之间线性相关关系的强弱.如果具有较强的线性相关关系,求y与x的线性回归方程(系数精确到0.01);如果不具有线性相关性,请说明理由.
参考公式:相关系数r=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sqrt{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}\sum_{i=1}^{n}({y}_{i}-\overline{y})^{2}}}$;回归直线的方程是:$\stackrel{∧}{y}$=bx+a,其中对应的回归估计值b=$\frac{\sum_{i=1}^{n}({x}_{i}-\overline{x})({y}_{i}-\overline{y})}{\sum_{i=1}^{n}({x}_{i}-\overline{x})^{2}}$,a=$\overline{y}$-b$\overline{x}$,$\stackrel{∧}{{y}_{i}}$是与xi对应的回归估计值.参考值:$\sqrt{15}$≈3.9.

查看答案和解析>>

同步练习册答案