精英家教网 > 高中数学 > 题目详情
15.在平面四边形ABCD中,
(1)若已知AD=8,CD=6,AB=13,∠ADC=90°,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=50.求sin∠BAD的值;
(2)若AC=3,BD=2,求($\overrightarrow{AB}$+$\overrightarrow{DC}$)•($\overrightarrow{AC}$+$\overrightarrow{BD}$)的值.

分析 (1)在Rt△ADC中,解直角三角形求得AC,cos∠CAD,sin∠CAD,再由数量积求夹角求得cos∠BAC,进一步得sin∠BAC,再由两角和的正弦求得sin∠BAD的值;
(2)利用平面向量的加法与减法法则转化为向量$\overrightarrow{AC}、\overrightarrow{BD}$求解.

解答 解:(1)在Rt△ADC中,AD=8,CD=6,∠ADC=90°,
则AC=10,cos∠CAD=$\frac{4}{5}$,sin∠CAD=$\frac{3}{5}$.
∵$\overrightarrow{AB}$•$\overrightarrow{AC}$=50,AB=13,
∴cos∠BAC=$\frac{\overrightarrow{AB}•\overrightarrow{AC}}{|\overrightarrow{AB}||\overrightarrow{AC}|}$=$\frac{5}{13}$.
∵0<∠BAC<π,∴sin∠BAC=$\frac{12}{13}$.
∴sin∠BAD=sin(∠BAC+∠CAD)=$\frac{63}{65}$.
(2)由于$\overrightarrow{AB}$=$\overrightarrow{AC}$+$\overrightarrow{CB}$,$\overrightarrow{DC}$=$\overrightarrow{DB}$+$\overrightarrow{BC}$,
∴$\overrightarrow{AB}$+$\overrightarrow{DC}$=$\overrightarrow{AC}$+$\overrightarrow{CB}$+$\overrightarrow{DB}$+$\overrightarrow{BC}$=$\overrightarrow{AC}$-$\overrightarrow{BD}$.
∴($\overrightarrow{AB}$+$\overrightarrow{DC}$)•($\overrightarrow{AC}$+$\overrightarrow{BD}$)=($\overrightarrow{AC}$-$\overrightarrow{BD}$)•($\overrightarrow{AC}$+$\overrightarrow{BD}$)=$|\overrightarrow{AC}{|}^{2}-|\overrightarrow{BD}{|}^{2}$=9-4=5.

点评 本题考查平面向量的数量积运算,考查向量的加法法则与减法法则,体现了数学转化思想方法,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.曲线y=x3+1在点P(1,2)处的切线方程为(  )
A.3x-y+1=0B.3x-y-1=0C.3x+y-1=0D.3x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.观察下列各等式:
$\frac{2}{2-4}$+$\frac{6}{6-4}$=2,
$\frac{5}{5-4}$+$\frac{3}{3-4}$=2,
$\frac{7}{7-4}$+$\frac{1}{1-4}$=2,
$\frac{10}{10-4}$+$\frac{-2}{-2-4}$=2,依照以上各式成立的规律,得到一般性的等式为(  )
A.$\frac{n}{n-4}$+$\frac{8-n}{(8-n)-4}$=2B.$\frac{n+1}{(n+1)-4}$+$\frac{(n+1)+5}{(n+1)-4}$=2
C.$\frac{n}{n-4}$+$\frac{n+4}{(n+4)-4}$=2D.$\frac{n+1}{(n+1)-4}$+$\frac{n+5}{(n+5)-4}$=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.茎叶图记录了甲、乙两组各四名同学的植树棵数,现分别从甲、乙两组中各随机选取一名同学.
(Ⅰ)求这两名同学的植树总棵数y的分布列;
(Ⅱ)每植一棵树可获10元,求这两名同学获得钱数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.若△ABC的内切圆面积为3π,三角形面积是10$\sqrt{3}$,A=60°,则BC边的长是(  )
A.5B.6C.7D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx+$\frac{1}{x}$,g(x)=ax2+x+1.
(Ⅰ)当a>0时,求函数h(x)=ex•g(x)的极值点;
(Ⅱ)证明:当a≤-1时,g(x)≤$\frac{f(x)}{x}$对?x∈(0,+∞)恒成立.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.观察下列等式:
①$\frac{1}{1×2}$=$\frac{1}{2}$;
②$\frac{1}{1×2}$+$\frac{1}{2×3}$=$\frac{2}{3}$;
③$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=$\frac{3}{4}$;
…,
请写出第n个等式$\frac{1}{1×2}$+$\frac{1}{2×3}$+…$\frac{1}{n(n+1)}$=$\frac{n}{n+1}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知α∈(0,π),且sinα+cosα=$\frac{\sqrt{5}}{5}$,则sin2α=-$\frac{4}{5}$,cos2α=-$\frac{3}{5}$,cosα=-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.α,β是两个平面,m,n是两条直线,有下列四个命题:
①如果m⊥n,m⊥α,n∥β,那么α⊥β
②如果m⊥α,α∥α,那么m⊥n
③如果α∥β,m?α,那么m∥β
④如果m∥n,α∥β,那么m与α所成的角和n与β所成的角相等.
其中正确的命题为(  )
A.②③④B.①②④C.①③④D.①②④

查看答案和解析>>

同步练习册答案