精英家教网 > 高中数学 > 题目详情
6.观察下列各等式:
$\frac{2}{2-4}$+$\frac{6}{6-4}$=2,
$\frac{5}{5-4}$+$\frac{3}{3-4}$=2,
$\frac{7}{7-4}$+$\frac{1}{1-4}$=2,
$\frac{10}{10-4}$+$\frac{-2}{-2-4}$=2,依照以上各式成立的规律,得到一般性的等式为(  )
A.$\frac{n}{n-4}$+$\frac{8-n}{(8-n)-4}$=2B.$\frac{n+1}{(n+1)-4}$+$\frac{(n+1)+5}{(n+1)-4}$=2
C.$\frac{n}{n-4}$+$\frac{n+4}{(n+4)-4}$=2D.$\frac{n+1}{(n+1)-4}$+$\frac{n+5}{(n+5)-4}$=2

分析 根据题中所给的规律,进行归纳猜想,得出本题结论.

解答 解:由于2+6=5+3+7+1=10-2=8则分子之和为8,
因为n+8-n=8,n+1+(n+1)+5=2n+7,n+n+4=2n+4,n+2+n+5=2n+6,
故只有A符合
故选:A

点评 本题考查的是归纳推理,要难点在于发现其中的规律,要注意从运算的过程中去寻找,本题属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

16.已知向量$\vec a,\vec b$满足$|{\vec a-2\vec b}|≤2$,则$\vec a•\vec b$的最小值为(  )
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知递减的等差数列{an}的前三项和为18,前三项的乘积为66.
(1)求数列{an}的通项公式;
(2)数列{an}的前n项和为Sn,若Sn=14,求n的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1)、P2(x2,y2)、P3(x3,y3)在抛物线上,且2x3=x1+x2,则有(  )
A.|FP1|+|FP2|=|FP3|B.${|{F{P_1}}|^2}+{|{F{P_2}}|^2}={|{F{P_3}}|^2}$
C.2|FP3|=|FP1|+|FP2|D.${|{F{P_3}}|^2}=|{F{P_1}}|•|{F{P_2}}|$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.有下列数组排成一排:$(\frac{1}{1}),(\frac{2}{1},\frac{1}{2}),(\frac{3}{1},\frac{2}{2},\frac{1}{3}),(\frac{4}{1},\frac{3}{2},\frac{2}{3},\frac{1}{4}),(\frac{5}{1},\frac{4}{2},\frac{3}{3},\frac{2}{4},\frac{1}{5}),…$如果把上述数组中的括号都去掉会形成一个数列:$\frac{1}{1},\frac{2}{1},\frac{1}{2},\frac{3}{1},\frac{2}{2},\frac{1}{3},\frac{4}{1},\frac{3}{2},\frac{2}{3},\frac{1}{4},\frac{5}{1},\frac{4}{2},\frac{3}{3},\frac{2}{4},\frac{1}{5}$,…有同学观察得到$\frac{63×64}{2}$=2016,据此,该数列中的第2012项是$\frac{5}{59}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.三角函数值sin1,sin2,sin3的大小顺序是(  )
A.sin1>sin2>sin3B.sin2>sin1>sin3C.sin1>sin3>sin2D.sin3>sin2>sin1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.函数y=4tan(2x+$\frac{π}{3}$)+1的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在平面四边形ABCD中,
(1)若已知AD=8,CD=6,AB=13,∠ADC=90°,且$\overrightarrow{AB}$•$\overrightarrow{AC}$=50.求sin∠BAD的值;
(2)若AC=3,BD=2,求($\overrightarrow{AB}$+$\overrightarrow{DC}$)•($\overrightarrow{AC}$+$\overrightarrow{BD}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.设f(x)是定义在(-∞,+∞)上的偶函数,且它在[0,+∞)上单调递增,若a=f(log${\;}_{\sqrt{2}}$$\frac{1}{\sqrt{3}}$),b=f(log${\;}_{\sqrt{3}}$$\frac{1}{\sqrt{2}}$),c=f(-2),则a,b,c的大小关系是b<a<c(从小到大排)

查看答案和解析>>

同步练习册答案