精英家教网 > 高中数学 > 题目详情
14.已知抛物线y2=2px(p>0)的焦点为F,点P1(x1,y1)、P2(x2,y2)、P3(x3,y3)在抛物线上,且2x3=x1+x2,则有(  )
A.|FP1|+|FP2|=|FP3|B.${|{F{P_1}}|^2}+{|{F{P_2}}|^2}={|{F{P_3}}|^2}$
C.2|FP3|=|FP1|+|FP2|D.${|{F{P_3}}|^2}=|{F{P_1}}|•|{F{P_2}}|$

分析 把等式2x3=x1+x3两边同时加p,整理得2(${x}_{3}+\frac{p}{2}$)=(${x}_{1}+\frac{p}{2}$)+(${x}_{2}+\frac{p}{2}$),进而根据抛物线的定义可得2|FP3|=|FP1|+|FP2|.

解答 解:∵2x3=x1+x2,∴2x3+p=x1+$\frac{p}{2}$+x2+$\frac{p}{2}$,
即2(${x}_{3}+\frac{p}{2}$)=(${x}_{1}+\frac{p}{2}$)+(${x}_{2}+\frac{p}{2}$),
∴由抛物线定义可得2|FP3|=|FP1|+|FP2|,
故选:C.

点评 本题考查抛物线的简单性质,考查数学转化思想方法,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=x2-2x,g(x)=ax+2(a>0),且对任意的x1∈[-1,2],都存在x2∈[-1,2],使f(x2)=g(x1),则实数a的取值范围是(  )
A.[3,+∞)B.(0,3]C.[$\frac{1}{2}$,3]D.(0,$\frac{1}{2}$]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.曲线y=x3+1在点P(1,2)处的切线方程为(  )
A.3x-y+1=0B.3x-y-1=0C.3x+y-1=0D.3x+y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.等边三角形ABC的边长为1,如果$\overrightarrow{BC}=\overrightarrow{a}$,$\overrightarrow{CA}=\overrightarrow{b}$,$\overrightarrow{AB}=\overrightarrow{c}$,那么$\overrightarrow{a}•\overrightarrow{b}-\overrightarrow{b}•\overrightarrow{c}+\overrightarrow{c}•\overrightarrow{a}$等于(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{1}{2}$D.-$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若tanα=-3,则$\frac{cosα+2sinα}{2cosα-3sinα}$的值为$-\frac{5}{11}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.函数f(x)的定义域为R,且满足f(x+4)=f(x),若f(x)=9,则f(8.5)等于(  )
A.-9B.9C.-3D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.观察下列各等式:
$\frac{2}{2-4}$+$\frac{6}{6-4}$=2,
$\frac{5}{5-4}$+$\frac{3}{3-4}$=2,
$\frac{7}{7-4}$+$\frac{1}{1-4}$=2,
$\frac{10}{10-4}$+$\frac{-2}{-2-4}$=2,依照以上各式成立的规律,得到一般性的等式为(  )
A.$\frac{n}{n-4}$+$\frac{8-n}{(8-n)-4}$=2B.$\frac{n+1}{(n+1)-4}$+$\frac{(n+1)+5}{(n+1)-4}$=2
C.$\frac{n}{n-4}$+$\frac{n+4}{(n+4)-4}$=2D.$\frac{n+1}{(n+1)-4}$+$\frac{n+5}{(n+5)-4}$=2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.茎叶图记录了甲、乙两组各四名同学的植树棵数,现分别从甲、乙两组中各随机选取一名同学.
(Ⅰ)求这两名同学的植树总棵数y的分布列;
(Ⅱ)每植一棵树可获10元,求这两名同学获得钱数的数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知α∈(0,π),且sinα+cosα=$\frac{\sqrt{5}}{5}$,则sin2α=-$\frac{4}{5}$,cos2α=-$\frac{3}{5}$,cosα=-$\frac{\sqrt{5}}{5}$.

查看答案和解析>>

同步练习册答案