分析 由已知两边平方,利用二倍角公式可得sin2α的值,由α∈(0,π),可得sinα>0,进而可得sinα-cosα的值,联立可求cosα的值,利用二倍角的余弦函数公式即可得解cos2α的值.
解答 解:∵sinα+cosα=$\frac{\sqrt{5}}{5}$,①
∴两边平方可得:sin2α+cos2α+2sinαcosα=1+sin2α=$\frac{1}{5}$,解得:sin2α=2sinαcosα=-$\frac{4}{5}$,
∵α∈(0,π),sinα>0,
∴cosα<0,可得sinα-cosα>0,
∴sinα-cosα=$\sqrt{(sinα-cosα)^{2}}$=$\sqrt{1-2sinαcosα}$=$\sqrt{1-(-\frac{4}{5})}$=$\frac{3\sqrt{5}}{5}$,②
∴①-②可得:cosα=-$\frac{\sqrt{5}}{5}$,
∴cos2α=2cos2α-1=2×(-$\frac{\sqrt{5}}{5}$)2-1=-$\frac{3}{5}$.
故答案为:-$\frac{4}{5}$,-$\frac{3}{5}$,-$\frac{\sqrt{5}}{5}$.
点评 本题主要考查了二倍角正弦函数公式,二倍角的余弦函数公式,平方差公式在三角函数化简求值中的应用,考查了计算能力和转化思想,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | |FP1|+|FP2|=|FP3| | B. | ${|{F{P_1}}|^2}+{|{F{P_2}}|^2}={|{F{P_3}}|^2}$ | ||
| C. | 2|FP3|=|FP1|+|FP2| | D. | ${|{F{P_3}}|^2}=|{F{P_1}}|•|{F{P_2}}|$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2006 | B. | 2006$\frac{1}{2}$ | C. | 2007$\frac{1}{2}$ | D. | 2007 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com