分析 先利用偶函数的定义将不同的函数值转化为(0,+∞)上的函数值,再利用函数的单调性比较大小即可.
解答 解:因为log${\;}_{\sqrt{2}}$$\frac{1}{\sqrt{3}}$=-log${\;}_{\sqrt{2}}$$\sqrt{3}$,log${\;}_{\sqrt{3}}$$\frac{1}{\sqrt{2}}$=-log${\;}_{\sqrt{3}}$$\sqrt{2}$,且函数f(x)为偶函数,
所以a=f(log ${\;}_{\sqrt{2}}$$\sqrt{3}$),b=f(log ${\;}_{\sqrt{3}}$$\sqrt{2}$),c=f(2).
易知0<log${\;}_{\sqrt{3}}$$\sqrt{2}$<1<log ${\;}_{\sqrt{2}}$$\sqrt{3}$<2,
且函数f(x)在[0,+∞)增函数,所以b<a<c.
故答案为:b<a<c.
点评 本题考查了函数的奇偶性与单调性性质在比较大小中的应用,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\frac{n}{n-4}$+$\frac{8-n}{(8-n)-4}$=2 | B. | $\frac{n+1}{(n+1)-4}$+$\frac{(n+1)+5}{(n+1)-4}$=2 | ||
| C. | $\frac{n}{n-4}$+$\frac{n+4}{(n+4)-4}$=2 | D. | $\frac{n+1}{(n+1)-4}$+$\frac{n+5}{(n+5)-4}$=2 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ②③④ | B. | ①②④ | C. | ①③④ | D. | ①②④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com