精英家教网 > 高中数学 > 题目详情
16.下列有关命题的说法正确的是(  )
A.“x2=1”是“x=1”的充分不必要条件
B.“x=2时,x2-3x+2=0”的否命题为真命题
C.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

分析 A,“x2=1”是“x=1”的必要条件;
B,“由x=1时,x2-3x+2=0可判定;
C,“<0”的否定是:“≥0”;
D,判定原命题真假,由命题的逆否命题与原命题同真假即可判定;

解答 解:对于A,“x2=1”是“x=1”的必要条件,故错;
对于B,“x=2时,x2-3x+2=0”的否命题为“x≠2时,x2-3x+2≠0”,∵x=1时,x2-3x+2=0,故错;
对于C,命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1≥0”,故错;
对于D,命题“若x=y,则sinx=siny”为真命题,故其逆否命题为真命题,故正确;
故选:D

点评 本题考查了命题真假的判定,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.我国是世界上严重缺水的国家,某市政府为了鼓励全市30万居民节约用水,计划调整居民生活用水收费方案,拟确定一个合理的月用水量标准x(吨),一位居民的月用水量不超过x的部分按平价收费,超过x的部分按议价收费,并希望约80%的居民每月的用水量不超过标准x(吨).为了了解居民用水情况,通过抽样,获得了某年100位居民每人的月均用水量(单位:吨),将数据按照[0,0.5),[0.5,1),[4,4.5)分成9组,制成了如图所示的频率分布直方图.
(1)求直方图中a的值,并估计全市居民中月均用量不低于3吨的人数;
(2)若每组内部,用水量视为均匀分布,估计x的值(精确到0.1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的n位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如右图所示.
(1)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;
(2)若按分层抽样的方法从年龄在[20,30)以内及[40,50)以内的市民中随机抽取10人,再从这10人中随机抽取3人进行调研,记随机抽的3人中,年龄在[40,50)以内的人数为X,求X的分布列以及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=x3-$\frac{9}{2}$x2+6x-a.
(1)求函数f(x)的单调区间.
(2)若f(x)的图象与x轴有三个交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,并说明理由;
(2)证明:直线l⊥平面ADD1A1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设函数y=f(x)在x=x0处可导,且$\underset{lim}{△x→0}$$\frac{f({x}_{0}-3△x)-f({x}_{0})}{2△x}$=1,则f′(x0)等于(  )
A.-$\frac{2}{3}$B.-$\frac{3}{2}$C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.命题“?x∈R,ax2-2ax+5>0恒成立”是假命题,则实数a的取值范围是a<0,或a≥5.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.下列赋值语句正确的是(  )
A.2=xB.x=y=zC.y=x+1D.x+y=z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{7}{2}$B.$\frac{14}{3}$C.7D.14

查看答案和解析>>

同步练习册答案