精英家教网 > 高中数学 > 题目详情
11.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,并说明理由;
(2)证明:直线l⊥平面ADD1A1

分析 (1)在平面ABC内,过点P作直线l和BC平行.利用线面平行的判定定理即可证明.
(2)在△ABC中,由AB=AC,D是线段AC的中点,可得AD⊥BC,l⊥AD.又AA1⊥底面ABC,可得AA1⊥l.即可证明.

解答 (1)解:在平面ABC内,过点P作直线l和BC平行.
理由如下:由于直线l不在平面A1BC内,l∥BC,BC?平面A1BC,
故直线l与平面A1BC平行.
(2)证明:在△ABC中,∵AB=AC,D是线段AC的中点,
∴AD⊥BC,又l∥BC,∴l⊥AD.
又∵AA1⊥底面ABC,∴AA1⊥l.
而AA1∩AD=A,
∴直线l⊥平面ADD1A1

点评 本题考查了线面平行与垂直的判定定理及其性质定理、等腰三角形的性质定理,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

1.在公差为d,各项均为正整数的等差数列{an}中,若a1=1,an=51,则n+d的最小值为(  )
A.14B.16C.18D.10

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.下列选项错误的是(  )
A.命题:“若x≠2,则x2-5x+6≠0”的逆否命题是“若x2-5x+6=0,则x=2”
B.“x<1”是“x2-3x+2>0”的充分不必要条件
C.若命题“p:?x∈R,x2+x+1≠0”,则“¬p:?x0∈R,x02+x0+1=0”
D.若“p∨q”为真命题,则p,q均为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.某高校共有学生15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时).
(1)应收集多少位女生的样本数据?
(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据的分组区间为:[0,2],(2,4],(4,6],(6,8],(8,10],(10,12]
①估计该校学生每周平均体育运动时间超过4小时的概率P;
②假设该校每个学生每周平均体育运动时间超过4小时的概率都为P,试求从中任选三人至少有一人每周平均体育运动时间超过4小时的概率
(3)在样本数据中,有60位女生的每周平均体育运动时间超过4小时,请完成每周平均体育运动时间与性别列联表,并判断是否有95%的把握认为“该校学生的每周平均体育运动时间与性别有关”.
P(K2≥k00.100.050.0100.005
k02.7063.8416.6357.879
附:K2=$\frac{n(ad-bc)2}{(a+b)(c+d)(a+c)(b+d)}$.
男生女生总计
每周平均体育运动时间不超过4小时453075
每周平均体育运动时间超过4小时16560225
总计21090300

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.直线l将圆x2+y2-2x-4y=0平分,且与直线x+2y=0平行,直线l的方程为(  )
A.2x-y=0B.2x-y-2=0C.x+2y-3=0D.x+2y-5=0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列有关命题的说法正确的是(  )
A.“x2=1”是“x=1”的充分不必要条件
B.“x=2时,x2-3x+2=0”的否命题为真命题
C.命题“?x∈R,使得x2+x+1<0”的否定是:“?x∈R,均有x2+x+1<0”
D.命题“若x=y,则sinx=siny”的逆否命题为真命题

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.抛物线y=2x2上两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1•x2=-$\frac{3}{4}$,则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.曲线y=(x+1)ex在点(0,1)处的切线方程为y=2x+1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$f(x)=\left\{\begin{array}{l}{2^{x-2}},x≤2\\{log_2}^{(x-1)},x>2\end{array}\right.$,则f[f(5)]=(  )
A.0B.1C.-1D.2

查看答案和解析>>

同步练习册答案