精英家教网 > 高中数学 > 题目详情
10.设$f(x)=\left\{\begin{array}{l}{2^{x-2}},x≤2\\{log_2}^{(x-1)},x>2\end{array}\right.$,则f[f(5)]=(  )
A.0B.1C.-1D.2

分析 先求出f(5)=log24=2,从而f[f(5)]=f(2),由此能求出结果.

解答 解:∵$f(x)=\left\{\begin{array}{l}{2^{x-2}},x≤2\\{log_2}^{(x-1)},x>2\end{array}\right.$,
∴f(5)=log24=2,
f[f(5)]=f(2)=22-2=1.
故选:B.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,并说明理由;
(2)证明:直线l⊥平面ADD1A1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在函数$y=sin(x+\frac{π}{6})$图象的对称轴中,与原点距离最小的一条的方程为x=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.设定义域为R的偶函数f(x)满足:对任意的x1,x2∈(0,+∞),(x1-x2)[f(x1)-f(x2)]>0,则f(-π)>f(3.14).(填“>”、“<”或“=”)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.定义域为R的函数f(x)满足f(x+1)=2f(x),且当x∈[0,1]时,f(x)=x2-x,则当x∈[-2,-1]时,f(x)的最小值为(  )
A.-$\frac{1}{16}$B.-$\frac{1}{8}$C.-$\frac{1}{4}$D.0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知某几何体的三视图如图所示,则该几何体的体积为(  )
A.$\frac{7}{2}$B.$\frac{14}{3}$C.7D.14

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.$\sqrt{1+cos100°}$-$\sqrt{1-cos100°}$=-2sin5°.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.正方体ABCD-A1B1C1D1中,与对角线A1B成45°的棱有(  )条.
A.4B.8C.12D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数$g(x)=\frac{{{4^x}-a}}{2^x}$是奇函数,f(x)=lg(10x+1)+bx是偶函数.
(1)求a和b的值.
(2)说明函数g(x)的单调性;若对任意的t∈[0,+∞),不等式g(t2-2t)+g(2t2-k)>0恒成立,求实数k的取值范围.
(3)设$h(x)=f(x)+\frac{1}{2}x$,若存在x∈(-∞,1],使不等式g(x)>h[lg(10a+9)]成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案