精英家教网 > 高中数学 > 题目详情
2.$\sqrt{1+cos100°}$-$\sqrt{1-cos100°}$=-2sin5°.

分析 利用二倍角公式把要求的式子化为$\sqrt{2}$(cos50°-sin50°),再利用两角和的余弦公式以及诱导公式化简得答案.

解答 解:$\sqrt{1+cos100°}-\sqrt{1-cos100°}$=$\sqrt{1+2co{s}^{2}50°-1}-\sqrt{1-1+2si{n}^{2}50°}$
=$\sqrt{2}$(cos50°-sin50°)=2cos(45°+50°)=-2sin5°.
故答案为:-2sin5°.

点评 本题考查二倍角公式的应用,两角和的余弦函数的应用,考查计算能力,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

3.抛物线y=2x2上两点A(x1,y1),B(x2,y2)关于直线y=x+m对称,且x1•x2=-$\frac{3}{4}$,则实数m的值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如果复数$\frac{2+ai}{1+i}(a∈R)$为纯虚数,则a=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设$f(x)=\left\{\begin{array}{l}{2^{x-2}},x≤2\\{log_2}^{(x-1)},x>2\end{array}\right.$,则f[f(5)]=(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左、右焦点分别为F1,F2,过F2且垂直于x轴的直线与椭圆C相交于A,B两点,|AB|=$\frac{8\sqrt{5}}{5}$,点P是椭圆C上的动点,且cos∠F1PF2的最小值为$\frac{3}{5}$.
(1)求椭圆C的方程;
(2)过点(-2,0)的直线l与椭圆相交于M,N两点,求$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=2sin(2ωx+$\frac{π}{6}$)+1(其中0<ω<1),若点(-$\frac{π}{6}$,1)是函数f(x)图象的一个对称中心,
(1)试求ω的值;
(2)先列表,再作出函数f(x)在区间x∈[-π,π]上的图象.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.考拉兹猜想又名3n+1猜想,是指对于每一个正整数,如果它是奇数,则对它乘3再加1;如果它是偶数,则对它除以2.如此循环,最终都能得到1.阅读如图所示的程序框图,运行相应程序,输出的结果i=(  )
A.4B.5C.6D.7

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.若x,y满足约束条件$\left\{\begin{array}{l}y≤x\\ x+y≤1\\ y>-1\end{array}\right.$,则$z=\frac{y}{x+1}$的范围是$(-∞,\frac{1}{3}]$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数$f(x)=Asin(2x+ϕ)(A>0,0<ϕ<\frac{π}{2})$,当$x=\frac{π}{12}$时,f(x)有最大值2.
(1)求f(x)的最小正周期及解析式;
(2)若$f(α+\frac{π}{3})=-\frac{1}{2},α∈[0,\frac{π}{4}]$,求$f(α+\frac{π}{6})$的值.

查看答案和解析>>

同步练习册答案