17£®ÒÑÖªÍÖÔ²C£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄ×ó¡¢ÓÒ½¹µã·Ö±ðΪF1£¬F2£¬¹ýF2ÇÒ´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬|AB|=$\frac{8\sqrt{5}}{5}$£¬µãPÊÇÍÖÔ²CÉϵ͝µã£¬ÇÒcos¡ÏF1PF2µÄ×îСֵΪ$\frac{3}{5}$£®
£¨1£©ÇóÍÖÔ²CµÄ·½³Ì£»
£¨2£©¹ýµã£¨-2£¬0£©µÄÖ±ÏßlÓëÍÖÔ²ÏཻÓÚM£¬NÁ½µã£¬Çó$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$µÄȡֵ·¶Î§£®

·ÖÎö £¨¢ñ£©ÒÀÌâÒâ|AB|=$\frac{2{b}^{2}}{a}$=$\frac{8\sqrt{5}}{5}$£¬¡ÏF1PF2×î´óʱÓàÏÒֵΪ$\frac{3}{5}$£¬´ËʱµãPÔÚÉ϶¥µã´¦µã´¦£¬$\frac{2{a}^{2}-4{c}^{2}}{2{a}^{2}}=\frac{3}{5}$£¬½â³öa£¬b¼´¿É£»
£¨¢ò£©µ±Ö±Ïßl²»ÓëxÖáÖØºÏʱ£¬ÉèÆä·½³ÌΪx=my-2£¬
ÓëÍÖÔ²CµÄ·½³ÌÁªÁ¢µÃ£¨4m2+5£©-16my-4=0£¬ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©Ôòy1+y2=$\frac{16m}{4{m}^{2}+5}$£¬y1y2=$\frac{-4}{4{m}^{2}+5}$
 $\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$=£¨x1-1£©£¨x2-1£©+y1y2=£¨my1-3£©£¨my2-3£©=£¨m2+1£©y1y2-3m£¨y1+y2£©=$\frac{-4£¨{m}^{2}+1£©}{4{m}^{2}+5}-\frac{48{m}^{2}}{4{m}^{2}+5}+9$ 
µ±lÓëxÖáÖØºÏʱ£¬M£¬N¼´ÎªÍÖÔ²×óÓÒ¶¥µã£¬$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$=-£¨a+c£©£¨a-c£©

½â´ð ½â£º£¨¢ñ£©¡ß¹ýF2ÇÒ´¹Ö±ÓÚxÖáµÄÖ±ÏßÓëÍÖÔ²CÏཻÓÚA£¬BÁ½µã£¬|AB|=$\frac{8\sqrt{5}}{5}$£¬¡à$\frac{2{b}^{2}}{a}=\frac{8}{\sqrt{5}}$£¬
¡ßµãPÊÇÍÖÔ²CÉϵ͝µã£¬ÇÒcos¡ÏF1PF2µÄ×îСֵΪ$\frac{3}{5}$£®¼´¡ÏF1PF2×î´óʱÓàÏÒֵΪ$\frac{3}{5}$£¬´ËʱµãPÔÚÉ϶¥µã´¦£¬¡à$\frac{2{a}^{2}-4{c}^{2}}{2{a}^{2}}=\frac{3}{5}$£¬
½âµÃa=$\sqrt{5}$£¬b=2£¬c-1
ÍÖÔ²CµÄ·½³ÌΪ$\frac{{x}^{2}}{5}+\frac{{y}^{2}}{4}=1$£»¡­£¨4·Ö£©
£¨¢ò£©µ±Ö±Ïßl²»ÓëxÖáÖØºÏʱ£¬ÉèÆä·½³ÌΪx=my-2£¬
ÓëÍÖÔ²CµÄ·½³ÌÁªÁ¢µÃ£¨4m2+5£©-16my-4=0£¬¡­£¨6·Ö£©
ÉèM£¨x1£¬y1£©£¬N£¨x2£¬y2£©Ôòy1+y2=$\frac{16m}{4{m}^{2}+5}$£¬y1y2=$\frac{-4}{4{m}^{2}+5}$
 $\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$=£¨x1-1£©£¨x2-1£©+y1y2=£¨my1-3£©£¨my2-3£©=£¨m2+1£©y1y2-3m£¨y1+y2£©=$\frac{-4£¨{m}^{2}+1£©}{4{m}^{2}+5}-\frac{48{m}^{2}}{4{m}^{2}+5}+9$
=-4+$\frac{61}{4{m}^{2}+5}$$¡Ê£¨-4£¬\frac{41}{5}]$¡­£¨10·Ö£©
µ±lÓëxÖáÖØºÏʱ£¬M£¬N¼´ÎªÍÖÔ²×óÓÒ¶¥µã£¬$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$=-£¨a+c£©£¨a-c£©=-4£»
×ÛÉÏ£¬$\overrightarrow{{F}_{2}M}$•$\overrightarrow{{F}_{2}N}$µÄȡֵ·¶Î§£º[-4£¬$\frac{41}{5}$]£®¡­£¨12·Ö£©

µãÆÀ ±¾ÌâÒÔÏòÁ¿ÎªÔØÌ壬¿¼²éÍÖÔ²µÄ±ê×¼·½³Ì£¬¿¼²éÏòÁ¿µÄÊýÁ¿»ý£¬¿¼²éÔËËãÄÜÁ¦£¬½âÌâʱӦעÒâ·ÖÀàÌÖÂÛ£¬Í¬Ê±ÕýÈ·ÓÃ×ø±ê±íʾÏòÁ¿£¬ÊÇÖеµÌâ

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÒÑÖªº¯Êýf£¨x£©=ax2+bx+4ln xµÄ¼«ÖµµãΪ1ºÍ2£®
£¨1£©ÇóʵÊýa£¬bµÄÖµ£»
£¨2£©Çóº¯Êýf£¨x£©ÔÚ¶¨ÒåÓòÉϵļ«´óÖµ¡¢¼«Ð¡Öµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

19£®Éè0£¼a£¼1£¬Èôº¯Êýf£¨x£©=ax+bµÄͼÏóÉÏÿһµã¶¼²»ÔÚµÚÒ»ÏóÏÞ£¬ÔòʵÊýbµÄ×î´óֵΪ-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®¶¨ÒåÓòΪRµÄº¯Êýf£¨x£©Âú×ãf£¨x+1£©=2f£¨x£©£¬ÇÒµ±x¡Ê[0£¬1]ʱ£¬f£¨x£©=x2-x£¬Ôòµ±x¡Ê[-2£¬-1]ʱ£¬f£¨x£©µÄ×îСֵΪ£¨¡¡¡¡£©
A£®-$\frac{1}{16}$B£®-$\frac{1}{8}$C£®-$\frac{1}{4}$D£®0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÇóÖµ£º
£¨1£©sin75¡ã£»
£¨2£©sin195¡ã£»
£¨3£©sin72¡ãcos42¡ã-cos72¡ãsin42¡ã£»
£¨4£©cos20¡ãcos70¡ã-sin20¡ãsin70¡ã£»
£¨5£©cos79¡ãcos56¡ã-cos11¡ãcos34¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®$\sqrt{1+cos100¡ã}$-$\sqrt{1-cos100¡ã}$=-2sin5¡ã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®ÒÑÖªÏòÁ¿$\overrightarrow a=£¨{1-t£¬2t-1£¬3}£©$£¬$\overrightarrow b=£¨{2£¬t£¬t}£©$£¬Ôò$|{\overrightarrow a-\overrightarrow b}|$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®2B£®$\sqrt{5}$C£®$\sqrt{6}$D£®$2\sqrt{2}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

6£®ÒÑÖªËæ»ú±äÁ¿¦Î·þ´ÓÕý̬·Ö²¼N£¨0£¬¦Ò2£©£¬ÈôP£¨¦Î£¾3£©=0.023£¬ÔòP£¨-3¡Ü¦Î¡Ü3£©=£¨¡¡¡¡£©
A£®0.954B£®0.023C£®0.977D£®0.046

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®ÒÑÖªÕýÏîµÈ±ÈÊýÁÐ{an}Âú×ãa7=a6+2a5£¬Èô´æÔÚÁ½Ïîam£¬an£¬Ê¹µÃ$\sqrt{{a_m}{a_n}}=4{a_1}$£¬Ôò$\frac{1}{m}+\frac{4}{n}$µÄ×îСֵΪ£¨¡¡¡¡£©
A£®$\frac{3}{2}$B£®$\frac{4}{3}$C£®$\frac{25}{6}$D£®²»´æÔÚ

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸