精英家教网 > 高中数学 > 题目详情
2.下列选项错误的是(  )
A.命题:“若x≠2,则x2-5x+6≠0”的逆否命题是“若x2-5x+6=0,则x=2”
B.“x<1”是“x2-3x+2>0”的充分不必要条件
C.若命题“p:?x∈R,x2+x+1≠0”,则“¬p:?x0∈R,x02+x0+1=0”
D.若“p∨q”为真命题,则p,q均为真命题

分析 写出原命题的逆否命题,可判断A;根据充要条件的定义,可判断B;写出原命题的否定命题,可判断C;根据复合命题真假判断的真值表,可判断D.

解答 解:命题:“若x≠2,则x2-5x+6≠0”的逆否命题是“若x2-5x+6=0,则x=2”,故A正确;
“x2-3x+2>0”?“x<1”,或“x>2”,故“x<1”是“x2-3x+2>0”的充分不必要条件,故B正确;
若命题“p:?x∈R,x2+x+1≠0”,则“¬p:?x0∈R,x02+x0+1=0”,故C正确;
若“p∨q”为真命题,则p,q中存在真命题,但不一定均为真命题,故D错误;
故选:D.

点评 本题以命题的真假判断与应用为载体,考查了复合命题,四种命题,充要条件,全称命题,难度中档.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.某重点高中拟把学校打造成新型示范高中,为此制定了学生“七不准”,“一日三省十问”等新的规章制度.新规章制度实施一段时间后,学校就新规章制度随机抽取部分学生进行问卷调查,调查卷共有10个问题,每个问题10分,调查结束后,按分数分成5组:[50,60),[50,60),[50,60),[50,60),[50,60),并作出频率分布直方图与样本分数的茎叶图(图中仅列出了得分在[50,60),[50,60)的数据).
(Ⅰ)求样本容量[50,60)和频率分布直方图中的[50,60)、[50,60)的值;
(Ⅱ)在选取的样本中,从分数在70分以下的学生中随机抽取3名学生进行座谈会,求所抽取的3名学生中恰有1人得分在[50,60)内的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.若以等边三角形ABC的顶点A,B为焦点的双曲线恰好过BC的中点,则双曲线的离心率为(  )
A.$\sqrt{2}$B.2C.$\sqrt{3}$D.$\sqrt{3}+1$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.交通指数是交通拥堵指数的简称,是综合反映道路网畅通或拥堵的概念,记交通指数为T,其范围分为五个级别,T∈[0,2)畅通;T∈[2,4)基本畅通;  T∈[4,6)轻度拥堵;T∈[6,8)中度拥堵;T∈[8,10]严重拥堵.早高峰时段(T≥3),从某市交通指挥中心随机选取了三环以内的50个交通路段,依据其交通指数数据绘制的频率分布直方图如图.
(Ⅰ)这50个路段为中度拥堵的有多少个?
(Ⅱ)据此估计,早高峰三环以内的三个路段至少有一个是严重拥堵的概率是多少?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知正方形ABCD的边长为2,E为CD的中点,则$\overrightarrow{AE}$•$\overrightarrow{AC}$=6.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.随着医院对看病挂号的改革,网上预约成为了当前最热门的就诊方式,这解决了看病期间病人插队以及医生先治疗熟悉病人等诸多问题;某医院研究人员对其所在地区年龄在10~60岁间的n位市民对网上预约挂号的了解情况作出调查,并将被调查的人员的年龄情况绘制成频率分布直方图,如右图所示.
(1)若被调查的人员年龄在20~30岁间的市民有300人,求被调查人员的年龄在40岁以上(含40岁)的市民人数;
(2)若按分层抽样的方法从年龄在[20,30)以内及[40,50)以内的市民中随机抽取10人,再从这10人中随机抽取3人进行调研,记随机抽的3人中,年龄在[40,50)以内的人数为X,求X的分布列以及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.“a(a-1)≤0”是“方程x2+x-a=0有实数根”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,在三棱柱ABC-A1B1C1中,侧棱AA1⊥底面ABC,AB=AC,D,D1分别是线段BC,B1C1的中点,P是线段AD上异于端点的点.
(1)在平面ABC内,试作出过点P与平面A1BC平行的直线l,并说明理由;
(2)证明:直线l⊥平面ADD1A1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.在函数$y=sin(x+\frac{π}{6})$图象的对称轴中,与原点距离最小的一条的方程为x=$\frac{π}{3}$.

查看答案和解析>>

同步练习册答案