精英家教网 > 高中数学 > 题目详情
5.2015年7月9日21时15分,台风“莲花”在我国广东省陆丰市甲东镇沿海登陆,造成165.17万人受灾,5.6万人紧急转移安置,288间房屋倒塌,46.5千公顷农田受灾,直接经济损失12.99亿元.距离陆丰市222千米的梅州也受到了台风的影响,适逢暑假,小明调查了梅州某小区的50户居民由于台风造成的经济损失,将收集的数据分成[0,2000],(2000,4000],(4000,6000],(6000,8000],(8000,10000]五组,并作出如下频率分布直方图:
(Ⅰ)试根据频率分布直方图估计小区平均每户居民的平均损失(同一组中的数据用该组区间的中点值作代表);
(Ⅱ)小明向班级同学发出倡议,为该小区居民捐款.现从损失超过4000元的居民中随机抽出2户进行捐款援助,设抽出损失超过8000元的居民为ξ户,求ξ的分布列和数学期望;
(Ⅲ)台风后区委会号召小区居民为台风重灾区捐款,小明调查的50户居民捐款情况如下表,在表格空白处填写正确数字,并说明是否有95%以上的把握认为捐款数额多于或少于500元和自身经济损失是否到4000元有关?
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
30
捐款不超
过500元
6
合计(图2)
P(K2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
附:临界值表参考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,n=a+b+c+d.

分析 (Ⅰ)根据频率分布直方图,即可估计小区平均每户居民的平均损失;
(Ⅱ)ξ的可能取值为0,1,2,求出相应的概率,即可求ξ的分布列和数学期望;
(Ⅲ)求出K2,与临界值比较,即可得出结论.

解答 解:(Ⅰ)记每户居民的平均损失为$\overline x$元,则:$\begin{array}{l}\overline x=(1000×0.00015+3000×0.0002+5000×0.00009\\+7000×0.00003+9000×0.00003)×2000=3360\end{array}$…(2分)
(Ⅱ)由频率分布直方图可得,损失超过4000元的居民共有(0.00009+0.00003+0.00003)×2000×50=15户,损失超过8000元的居民共有0.00003×2000×50=3户,因此,ξ的可能取值为0,1,2$P(ξ=0)=\frac{{C_{12}^2}}{{C_{15}^2}}=\frac{22}{35}$,$P(ξ=1)=\frac{{C_3^1C_{12}^1}}{{C_{15}^2}}=\frac{12}{35}$,$P(ξ=2)=\frac{C_3^2}{{C_{15}^2}}=\frac{1}{35}$

ξ012
P$\frac{22}{35}$$\frac{12}{35}$$\frac{1}{35}$
ξ的分布列为$Eξ=0×\frac{22}{35}+1×\frac{12}{35}+2×\frac{1}{35}=\frac{2}{5}$…(7分)
(Ⅲ)如图:
经济损失不超过
4000元
经济损失超过
4000元
合计
捐款超过
500元
30939
捐款不超
过500元
5611
合计351550
K2=$\frac{50×(30×6-9×5)^{2}}{39×11×35×15}$≈4.046>3.841,
所以有95%以上的把握认为捐款数额是否多于或少于500元和自身经济损失是否4000元有关.…(12分)

点评 本题考查频率分布直方图,独立性检验知识,考查求ξ的分布列和数学期望,考查学生分析解决问题的能力,知识综合性强.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

15.已知在极坐标系中,直线l的方程为ρ(cosθ-sinθ)=1,圆C的方程为ρ2-4ρcosθ+3=0
(1)试判断直线l与圆C的位置关系;
(2)若直线l与圆ρ2-4ρcosθ+a=0相交所得的弦长为$\sqrt{2}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.贵阳市某数学教师从他所教的2015届高三(X)班与高三(Y)班学生的高考数学成绩中,随机抽取20名学生的成绩绘制成频率分布直方图,如图所示.
(I)求频率分布直方图中a的值,并估计高三(X)班与高三(Y)班学生在此次考试中数学成绩的优良率(考试分数不小于110分为优良分);
(Ⅱ)求这20名学生的数学考试成绩的平均分.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.计算$\frac{tan(\frac{π}{4}-α)cos2α}{2co{s}^{2}(\frac{π}{4}+α)}$=1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=-(x-2m)(x+m+3)(其中m<-1),g(x)=2x-2.
(Ⅰ)若命题p:log2[g(x)]≥1是假命题,求x的取值范围;
(Ⅱ)若命题q:?x∈(1,+∞),f(x)<0或g(x)<0为真命题,求m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知ex+ax-a>0恒成立,则实数a的取值范围为(-e2,0].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.等差数列{an}的前n项和为Sn,若a2+a7+a12=15,则S13的值是(  )
A.45B.65C.80D.130

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=$\frac{(\frac{1}{2})^{x}-1}{(\frac{1}{2})^{x}+2}$.
(1)求f(x)的定义域,值域;
(2)讨论f(x)的奇偶性;
(3)讨论f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知p:|x+1|≤2,q:(x+1)(x-m)≤0.
(1)若m=4,命题“p或q”为真,“p且q”为假,求实数x的取值范围;
(2)若¬q是¬p的必要不充分条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案