精英家教网 > 高中数学 > 题目详情
2.函数f(x)=$\frac{{x}^{2}+2x+2}{2{x}^{2}+x+1}$的最大值为2.

分析 根据判别式即可求出函数的值域.

解答 解:设y=$\frac{{x}^{2}+2x+2}{2{x}^{2}+x+1}$,
则2x2y+yx+y=x2+2x+2,
∴x2(2y-1)+(y-2)x+y-2=0,
∴△=(y-2)2-4(2y-1)(y-2)≥0,
即(y-2)(7y-2)≤0,
解得$\frac{2}{7}$≤y≤2,
故函数f(x)=$\frac{{x}^{2}+2x+2}{2{x}^{2}+x+1}$的最大值为2.
故答案为:2.

点评 本题考查了利用根的判别式求函数的最值的问题,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.直线y=x与抛物线y=x(x+2)所围成的封闭图形的面积等于(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知直线y=-x+m是曲线y=x2-3lnx的一条切线,若函数f(x)=$\frac{{m}^{x}-1}{1+{m}^{x}}$,满足f[a(x+1)]+f[(x+2)(x+4)]>0,对于任意的x∈(0,+∞)恒成立,则实数a的取值范围为(  )
A.(2$\sqrt{3}$+4,+∞)B.[-2$\sqrt{3}$,+∞)C.(4,+∞)D.(-2$\sqrt{3}$-4,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}$x2+(1-x)ex(e为自然对数的底数),g(x)=x-(1+a)lnx-$\frac{a}{x}$,a<1.
(1)求曲线f(x)在x=1处的切线方程;
(2)讨论函数g(x)的极小值;
(3)若对任意的x1∈[-1,0],总存在x2∈[e,3],使得f(x1)>g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.函数f(x)=$\sqrt{2-si{n}^{2}2x+cos4x}$的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.若f(x)=-(a-1)x3+2x+2在(-∞,-4]递增,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若z=(1+i)i(i为虚数单位),则$\overline{z}$的虚部是(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.下列函数为偶函数的是(  )
A.y=sinxB.y=cosxC.y=tanxD.y=sin2x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知(1+mx)n(m∈R,n∈N*)的展开式的二项式系数之和为32,且展开式中含x3项的系数为80.则(1+mx)n(1-x)6展开式中含x2项的系数为-5.

查看答案和解析>>

同步练习册答案