精英家教网 > 高中数学 > 题目详情
7.直线y=x与抛物线y=x(x+2)所围成的封闭图形的面积等于(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

分析 联立方程,先求出其交点坐标,再利用微积分基本定理定理即可得出.

解答 解:联立方程得到$\left\{\begin{array}{l}{y=x}\\{y=x(x+2)}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=0}\\{y=0}\end{array}\right.$或$\left\{\begin{array}{l}{x=-1}\\{y=-1}\end{array}\right.$,
故直线y=x与抛物线y=x(x+2)所围成的封闭图形的面积等于
${∫}_{-1}^{0}$(x-x2-2x)dx=于${∫}_{-1}^{0}$(-x2-x)dx=(-$\frac{1}{3}$x3-$\frac{1}{2}$x2)|${\;}_{-1}^{0}$=0-($\frac{1}{3}$-$\frac{1}{2}$)=$\frac{1}{6}$,
故选:A.

点评 本题考查定积分的运用,解题的关键是确定积分区间与被积函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.若不等式|a+2b|+|2b-a|≥|a|(|x-1|+|x-2|),对a、b∈R恒成立且a≠0,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知 $\vec a$=(2,-3,1),$\vec b$=(2,0,3),则$\vec a$•$\vec b$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)求值sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°);
(2)若tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$+cos2α之值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C1、抛物线C2的焦点均在x轴上,C1的中心和C2的顶点均为原点O,从每条曲线上取两个点,将其坐标记录如下:A1(3,-2$\sqrt{3$)、A2(-2,0)、A3(4,-4)、A4($\sqrt{2}$,$\frac{{\sqrt{2}}}{2}$).
(Ⅰ)经判断点A1,A3在抛物线C2上,试求出C1,C2的标准方程;
(Ⅱ)已知直线l的斜率为1,且经过抛物线C2的焦点F与椭圆C1交于A、B两点,求线段AB的长;
( III)是否存在正数m,对于过点M(m,0)且与曲线C2有两个交点A,B的任一直线,都有$\overrightarrow{FA}$•$\overrightarrow{FB}$<0?若存在,求出m的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=x2-x3的单调减区间为(-∞,0)和($\frac{2}{3}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,若$\sqrt{3}$b=2asinB,则A为(  )
A.60°B.30°C.60°或120°D.30°或150°

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,既是奇函数,又在定义域内为减函数的是(  )
A.$y=ln\frac{1-x}{1+x}$B.$y=x+\frac{1}{x}$C.$y=\frac{1}{x}$D.y=xcosx

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.函数f(x)=$\frac{{x}^{2}+2x+2}{2{x}^{2}+x+1}$的最大值为2.

查看答案和解析>>

同步练习册答案