精英家教网 > 高中数学 > 题目详情
15.(1)求值sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°);
(2)若tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$+cos2α之值.

分析 (1)直接利用诱导公式以及特殊角的三角函数求解即可.
(2)利用同角三角函数基本关系式,化简所求的表达式为正切函数的形式,代入求解即可.

解答 解:(1)sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°)
=$\frac{3}{4}$-1+1-cos230°-sin30°
=-$\frac{1}{2}$;
(2)若tanα=2,$\frac{sinα+cosα}{sinα-cosα}$+cos2α
=$\frac{tanα+1}{tanα-1}+\frac{co{s}^{2}α}{co{s}^{2}α+si{n}^{2}α}$
=$\frac{tanα+!}{tanα-1}+\frac{1}{1+ta{n}^{2}α}$
=$\frac{2+1}{2-1}+\frac{1}{1+4}$
=$\frac{16}{5}$.

点评 本题考查诱导公式以及特殊角的三角函数化简求值,考查转化思想以及计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.一个几何体的三视图如图所示,求此几何体的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.如图,圆心角∠AOB=1弧度,AB=2,则∠AOB对的弧长为(  )
A.$\frac{1}{sin0.5}$B.sin0.5C.2sin1D.$\frac{1}{cos0.5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知函数y=x3-x2-ax+b在(0,1)处的切线方程为y=2x+1,则a+b=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知顶点在原点,焦点在x轴上的抛物线过点(1,2).
(Ⅰ)求抛物线的标准方程;
(Ⅱ)直线y=x-4与抛物线相交于A,B两点,求三角形AOB的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.设条件p:x2-4x+3≤0,条件q:x2-(2a+1)x+a(a+1)≤0,且¬p是¬q的充分不必要条件,求实数a的取值范围[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.直线y=x与抛物线y=x(x+2)所围成的封闭图形的面积等于(  )
A.$\frac{1}{6}$B.$\frac{1}{3}$C.$\frac{2}{3}$D.$\frac{5}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.如图,ABCD-A1B1C1D1是边长为1的正方体,S-ABCD是高为1的正四棱锥,若点S,A1,B1,C1,D1在同一个球面上,则该球的表面积为$\frac{81}{16}π$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=$\frac{1}{2}$x2+(1-x)ex(e为自然对数的底数),g(x)=x-(1+a)lnx-$\frac{a}{x}$,a<1.
(1)求曲线f(x)在x=1处的切线方程;
(2)讨论函数g(x)的极小值;
(3)若对任意的x1∈[-1,0],总存在x2∈[e,3],使得f(x1)>g(x2)成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案