精英家教网 > 高中数学 > 题目详情
6.如图,圆心角∠AOB=1弧度,AB=2,则∠AOB对的弧长为(  )
A.$\frac{1}{sin0.5}$B.sin0.5C.2sin1D.$\frac{1}{cos0.5}$

分析 设半径为r,由已知利用余弦定理,二倍角公式可求r,进而根据弧长公式即可计算得解.

解答 解:∵圆心角∠AOB=1弧度,AB=2,设半径为r,
∴在△ABO中,由余弦定理可得:22=r2+r2-2r•r•cos1,
∴整理可得:r2=$\frac{2}{1-cos1}$=$\frac{2}{2si{n}^{2}0.5}$=$\frac{1}{si{n}^{2}0.5}$,
∴解得:r=$\frac{1}{sin0.5}$.
∴∠AOB对的弧长l=$\frac{1}{sin0.5}$×1=$\frac{1}{sin0.5}$.
故选:A.

点评 本题主要考查了余弦定理,二倍角公式,弧长公式在解三角形中的应用,考查了转化思想,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

16.(1)对于函数f(x),若在定义域内存在实数x满足f(-x)=-f(x)则称f(x)为局部函数,已知二次函数f(x)=ax2+2x-4a(a∈R,a≠0)是定义域在R上的局部函数,则满足f(-x)=-f(x)的x值是±2
(2)若直角坐标平面内两点A、B满足条件:点A、B都在f(x)的图象上;点A、B关于原点对称,则对称点(A、B)对是函数的一个姊妹点对点对(A、B)与(B、A)可看做一个姊妹点对.已知函数f(x)=$\left\{\begin{array}{l}{{x}^{2}+2x,x<0}\\{\frac{2}{{e}^{x}},x≥0}\end{array}\right.$则f(x)的姊妹点对个数为2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.若不等式|a+2b|+|2b-a|≥|a|(|x-1|+|x-2|),对a、b∈R恒成立且a≠0,求实数x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.已知$\frac{(1-i)^{2}}{z}$=1+i(i为虚数单位),则复数z在复平面内的对应点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知函数f(x)=ex-ax+1,其中a为实常数,e=2.71828…为自然对数的底数.
(1)当a=e时,求函数f(x)的单调区间;
(2)若函数f(x)在定义域内单调递增,求a的取值范围;
(3)已知a>0,并设函数f(x)的最小值为g(a),求证:g(a)≤2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知角α终边上一点P(-4,3).
(Ⅰ)求$\frac{{cos(α-\frac{π}{2})sin(2π-α)cos(π-α)}}{{sin(\frac{π}{2}+α)}}$的值;
(Ⅱ)若β为第三象限角,且tanβ=1,求cos(2α-β)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知 $\vec a$=(2,-3,1),$\vec b$=(2,0,3),则$\vec a$•$\vec b$=7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.(1)求值sin2120°+cos180°+tan45°-cos2(-330°)+sin(-210°);
(2)若tanα=2,求$\frac{sinα+cosα}{sinα-cosα}$+cos2α之值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.下列函数中,既是奇函数,又在定义域内为减函数的是(  )
A.$y=ln\frac{1-x}{1+x}$B.$y=x+\frac{1}{x}$C.$y=\frac{1}{x}$D.y=xcosx

查看答案和解析>>

同步练习册答案