精英家教网 > 高中数学 > 题目详情
6.用数学归纳法证明等式“1+2+3+…+(n+3)=$\frac{{({n+3})({n+4})}}{2}({n∈{N^*}})$”,当n=1时,等式应为1+2+3+4=$\frac{(1+3)(1+4)}{2}$.

分析 当n=1时,n+3=4,而等式左边起始为1的连续的正整数的和,由此易得答案

解答 解:当n=1时,n+3=4,
而等式左边起始为1的连续的正整数的和,
故n=1时,等式左边的项为:1+2+3+4
故选答案为:1+2+3+4=$\frac{(1+3)(1+4)}{2}$

点评 本题考查的知识点是数学归纳法的步骤,在数学归纳法中,第一步是论证n=1时结论是否成立,此时一定要分析等式两边的项,不能多写也不能少写,否则会引起答案的错误.解此类问题时,注意n的取值范围.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

16.已知抛物线C:x2=8y.AB是抛物线C的动弦,且AB过F(0,2),分别以A、B为切点作轨迹C的切线,设两切线交点为Q,证明:AQ⊥BQ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.设正实数x,y,z,w满足2012x2=2013y2=2014z2=2015w2,$\frac{1}{x}$+$\frac{1}{y}$+$\frac{1}{z}$+$\frac{1}{w}$=1,试求$\sqrt{2012x+2013y+2014z+2015w}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知函数f(x)=x-sinx,数列{an}满足:0<a1<1,an+1=f(an),n=1,2,3,….
(1)证明:f(x)在(0,1)上是增函数
(2)用数学归纳法证明:0<an<1,n=1,2,3,…;
(3)证明:${a_{n+1}}<\frac{1}{6}{a_n}^3$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.图甲是应用分形几何学做出的一个分形规律图,按照图甲所示的分形规律可得图乙所示的一个树形图.

我们采用“坐标”来表示图乙各行中的白圈、黑圈的个数(横坐标表示白圈的个数,纵坐标表示黑圈的个数).比如第一行记为(0,1),第二行记为(1,2),第三行记为(4,5),照此下去,第四行中白圈与黑圈的“坐标”为(13,14),第n(n∈N*)行中白圈与黑圈的“坐标”为($\frac{{3}^{n-1}-1}{2}$,$\frac{{3}^{n-1}+1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.用数学归纳法证明1+a+a2+…+an+1=$\frac{1-{a}^{n+2}}{1-a}$(a≠1,n∈N*),在验证n=1成立时,左边的项是(  )
A.1B.1+aC.1+a+a2D.1+a+a2+a4

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知点F为抛物线E:y2=4x的焦点,点A(2,m)在抛物线E上,则|AF|=3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.抛物线C:y=ax2的准线方程为y=-$\frac{1}{4}$,则其焦点坐标为(0,$\frac{1}{4}$),实数a的值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.平面直角坐标系中,已知直线l:x=4,定点F(1,0),动点P(x,y)到直线l的距离是到定点F的距离的2倍.
(1)求动点P的轨迹C的方程;
(2)若M为轨迹C上的动点,直线m过点M且与轨迹C只有一个公共点,求证:此时点E(-1,0)和点F(1,0)到直线m的距离之积为定值.

查看答案和解析>>

同步练习册答案